‘88 KACC 1988.10.21~22

NC TOOL PATH GENERATION
OF ARBITRARILY SHAPED POCKETS

°
Yong Seok Suh and Kunwoo Lee

Department of Mechanical Design and Production Engineering

Seoul National University, Seoul, Korea

ABSTRACT

In machining die cavities or mechanical parts, we often
encounter the needs to remove a material within a given
boundary. Even though this pocket cutting capability has been
implemented in many NC packages, most of them can handle
convex shaped pockets bounded by curves of limited types and
numbers.

In this work, a procedure has been developed to machine
pockets of a free surface bounded by lines, circular arcs and
free curves. Also, the cutter location data is computed directly
without using iterative method for better computational
efficiency.

1. INTRODUCTION

In machining die cavities or mechanical parts, we often
encounter the needs to remove material within a given
boundary. Therefore, a procedureis needed to cut away the
bounded area, so called a pocket, with an NC machine
efficiently and- exactly within some given tolerances. This
pocket cutting capability has been implemented in many
NC packages[1,2 |. Even though many efficient ways of
NC pocketing have been published[3], most of them can
handle the pockets of limited shapes, i.e.,
pockets and/or pockets bounded by curves of limited types
and numbers. Also, only few publications with the detail
description of the algorithm can be found. Among the
published works, Persson’s carly work| 3] seems to describe
the efficient and brilliant idea, but it cannot handle the
pockets bounded by free curves.

convex-shaped

The objective of this work is to derive a procedure in which
the cutter location data (CL data) are generated in the
proper sequence to cut the pockets of arbitrary shape, which is
modelled by a B-Rep[4] based modeler. Our method is
somewhat traditional in that the offset procedure is used,
but rather general in that the pocket may be bounded by many
arbitrary free curves with allowing some areas:that are not to
be machined so called "islands". Additionally, the bottom
of the pocket to be machined may be any sculptured surface.

The procedure starts from a three dimensional model
generated by a geometric modeler developed in our laboratory,
which is a non-uniform rational B-spline[16] based B-Rep
modeler. Once the shape of the pocket is modelled, the offset
curves and the associated CL data are generated at every
offsetting step. To machine pockets precisely within given

901

tolerances, reliable CL data should be computed through a
fast algorithm. In this work, the CL data are computed from
each offset curve without using numerical iterative method.
Then the sequence among the generated CL data is determined
to cut the pocket in the right sequence.

Basic approach of our method is discussed in the next
section, followed by more details.

2. BASIC APPROACH

A pocket can be machined in zig-zag or spiral-like fashion
as shown in Figure 2.1, and the tool path generation of the
spiral-like machining is considered in this work. The basic idea
adopted in this work to generate the spiral-like tool path is to
shrink the boundary profile inwardly while the island profile is
expanded outwardly by a given amount step by step as
illustrated in Figure 2.2. Here the term ’boundary profile’
means a closed loop composed of the upper edges of the watl
faces of a pocket, and the ’island profile’ is a group of edges
bounding the island which is the region not to be machined.

Figure 2.1 Tool path planning for pocket

The boundary profile is parametrized to have a clockwise
direction when viewed above, and a counterclockwise
direction for the island profile(s) as in Figure 2.2(a). The
offset value is determined by the machining tolerances and
geometrical considerations on the radius of curvature of the
part surface at step. As this offsetting process
illustrated in Figure 2.2 goes on, three extraordinary cases may
happen. The first case is that the boundary profile collapses
and forms some loops by itself as in Figure 2.3(a). The
same case can occur on the island profile with a concave
portion. The loops should be processed such that the
resulting profile is obtained as in Figure 2.3(b). The detail

each

o

(a)

&,

©

Figure 2.2 Offset procedure

c@

5 %%

Figure 2.3

boundary profile

\'ﬁ

description of the processing the loops of self-intersections will
be described later in section 2.1. The second case is shown
in Figure 2.3(c), where the shrunk boundary profile intersects
the expanded island profile(s) at that step. The resulting offset
prbfile at this step has to be obtained as in Figure 2.3(d).
The last case is that the expanded island profiles intersect
each other as illustrated in Figure 2.3(e). This case should be
corrected as in Figure 2.3(f) where the number of the
islands is reduced. Note that, in the first and the second cases
above," the resulting profile(s) is neither shrunk boundary nor
the expanded island and this profile will be called "lake" profile
from now on (see Figure 2. ()). As can be seen easily, the
lake profile can never exists with the boundary profile at the
same time at each offsetting step.

902

In this work, the profile(s) corresponding to the previous
offset step is overwritten by the current one(s) instead of
storing the every offsetted profile to save the memory usage.
So, the CL data corresponding to each step have to be
calculated simultaneously during the offsetting procedure. In
other words, Once the CL data are computed and stored for a
step, the offset step procedure is performed and the
corresponding CL data is calculated. stored again. The
procedure is repeated until some terminal condition is satisfied.
The offset procedure terminates when a profile is shrunk to a
point by any one further step. When every profile stops
offsetting, the overall offset procedure ends. The CL data are
computed at each offsetting step as follows. After one offset
step is performed, the offsetted profiles are swept down
along -Z direction to yield the surfaces. Then, by intersecting
the ruled surfaces and the bottom surface of the pocket, we
can get the tool contact points(CC points). The CC data can
be transformed easily to the CL data as described in section
2.3. Calculation of the CL data to machine a sculptured
surface has been described in many publications [5,6,7,8,9],
but they usually used numerical iterative method as in APT.
The method has no guarantee on convergence and has
difficulties in guessing the initial values. In this work, the CL
data can be obtained directly as a by-product of the surface
intersection between the ruled surfaces from the profile and
the bottom surface. The detail will be explained in section 2.3.
Note that at the first step of the offset procedure, the
original boundary profile and the island profile(s) should be
offsetted by the amount of the tool radius and the CC data is
calculated by intersecting their ruled surfaces and the
bottom surface which is offsetted by the tool radius in
order to avoid the gouging problem that may happen at the
boundary of two surfaces as in Figure 2.4[10].

The CL data calculated at each offset step is not arranged
in the same sequence as the proper machining sequence
but rugged and scattered here and there, as described
previously. Thus the CL data should be sorted in a
suitable order. The method of sorting will be described in
later section. The resulting CL data can be transferred as a file
or used for verifying the tool path.

Tool position al ihe
e0d of curve |

Tool poution af the
start of curve 2

Figure 2.4 Gouging problem at surface boundary

2.1 Computation of offset curves

There are several articles on B-spline offset
techniques[11,12]. For two dimensional offsetting, Tiller and
Hanson’s subdivision method[11] seems to be adequate,
and thus the offset procedure in this work follows the Tiller’s
with some modifications. In this work, not only a curve but
also a whole profile has to be offsetted. Here we use the term
*profile’ to represent a closed two dimensional entity composed
of many curves.
kinds of curves and all the profiles used in this work arc

Actually, a profile is composed of many

closed. The profile of a pocket may be composed of arbitrary
3-D curves, but we don’t need to consider the three
dimensional offset problem because the eventual goal of our
profile offset is obtaining the ruled surfaces by sweeping the
profile in Z-direction. Tiller also gave a good algorithm to
handle this profile offset problem. Only a brief discussion
will be made about the procedure to offset a curve and a
whole profile respectively. The full description can be found
in the Tiller’s.

Single curve offset
Since there are many literatures describing the B-spline

curve[13,14, 15], only the expression of the nonrational and
rational B-spline curves will be given here [16]

n
Ct) = 3 B (0P,
oo o
n
> Bk P,
i=1
cw = — 0]
> B; 10 By
i=1
where
P; : 2-D or 3-D Coordinates of points called control points
h; : Homogeneous coordinates

t : Parameter variable
B; 4(t) : B-spline function in variable t of order k (degree k-1)
n : Number of the control points

The B-spline function B, ,(r) is defined by the order k and a
knot vector {tj}j=1"+" The offset of a curve C(¢) can be
obtained by
0@ = C@) +dN() (3

where d is the scalar value of the offset distance and N(¢) is the
unit normal vector of C'(¢) at parameter t. Generally, the offset
of a B-spline curve cannot be expressed in a B-spline form[11],
and thus it has to be approximated. Following the next steps
will give a good approximation to the offset of a curve.
The following step can be understood better with the help of
Figure 2.5.

1. Seti-1

2. Let C be the curve and d be the offset distance. ‘And let
{A} be a set of the original control points and {K} be the
corresponding knot vector.

3. Offset each legs of the control polygon {a¥ by the
distance d and then calculate the intersection of the offset
polygon legs pairwise. The resulting point set {B}i is a
new control polygon set, which has the same number as
{A¥. With this {B}Y and the {K} , the roughly
approximated offset 0' is defined.

4. Check the deviation A of 0' from the true offset which
is computed by Equation (3)

5. If the A is greater or equal to given tolerance, subdivide
{a} and {K} to get Ay AK¥*! . Thenseti~i+1 and
go to step 2. If the deviation is less than the tolerance,
stop the procedure.

903

B, \(

Polygon
oftset

I8

Figure 2.6 Self loop of a curve

Figure 2.5

There can be a self-loop problem as in Figure 2.6 when
the radius of curvature at some point is less than the
absolute value of the offset distance. This can be avoided
simply as follows. First, calculate the two parametric
values #; and ¢, corresponding to the self intersecting points.
Then split the curve at #; and ¢, using Boehm algorithm{17]
to divide the curve into three parts. Discarding the middle
portion, the remaining two separated curves left take the
place of the original one with the loop removed.

Profile offset

LetP = {C i}fel be a profile composed of n curves as shown
in Figure 2.7. The following steps describe a procedure to
offset a whole profile. Here Oei and OJPrl mean the end point
of the offset of the i-th curve and the starting point of
that of the (i+1)-th curve respectively, i.e. the superscript i
stands for the i-th curve of the given profile.

1. Offset C* and C**! to obtain ' and 0'*L.

2. 10, =0"" Then
go to END

3. Else
begin
Calculate tangent T: and T_:H at Oi and 0j+1
respecti_vely.] Then, ‘construct two lines
L= OL4NT and [< O where
A and At are parametric values. Intersecting the
two lines, three cases arise.

If (parallel or A’ < 0 and A**1 > 0) Then
Connect simply Oi and O_f” by a line as in Figure
2.7(a).

Else if (A A**1 > 0) then
Extend the two curves at both the points 0: and
0 by lines along their tangent direction
respectively as in Figure 2.7(b).

Else if (A > 0 and A**! < 0) then
Connect the two points O’ and O:H by a circular
arc as in Figure 2.7(c).

End; ’

4

2.2 Processing loops of an offset profile

When a whole profile is offsetted, some loops may result as
in the case of a single curve as illustrated in Figure 2.8. In this
case, some loops have to be removed while others being alive.
We will focus on the situation shown in Figure 2.8. Other
situations shown in Figure 2.3(c) and (e) can be processed in
the similar fashion. By giving a simple glimpse at Figure
2.8, we intuitively know that the loops L, and L, should be
removed. But how can we let the computer perceive and

Figure 2.8 Self loops of a profile

process them automatically ? Tiller[11] gave several
solutions to that question, but in this work, we invented a very
simple and neat method suitable especially for this pocket
profile offsetting. Remember that directions are already
assipned to every profile from the beginning before the
offset procedure as in Figure 2.2(a), and the direction does
not change during the offset procedure. This means that if
we start traveling from any one point on the profile and keep
traveling in the direction of increasing parameter of each
curve, then we can go through all the curves of the profile and
return to the start point. Any existence of intersection point
between the curves of a profile indicates the profile must
have some self-loops as in Figure 2.8. For the example of
Figure 2.8,
points P{,P,,P3and P, Then, split the intersecting curves at
those points. For example, splitting the curve C2 results in the
curves C ; and C % . The split curves have the same directions
as the original curve. Then the curves are grouped into several
loops as follows. Start from any arbitrary curve (for example,
curve Cl of Figure 2.8) and travel along the profile in its
direction it, until any intersection point is encountered(point
P, in this example). At this instant, store Cé as the next
starting curve of the next procedure, and transfer to the

the intersection between the curves will result

curve C fo which intersects the current curve. Following 0120
in its direction, we return to the first starting curve, which
forms the closed loop L. The above procedure is repeated for
the next starting curve (C;) to derive the loop L, The
procedure is repeated until every intersection points P; are
visited twice. After this grouping procedure is performed,
every loop is treated as a separated profile. In this example,
loops L, and L, have counterclockwise direction when
viewed above, while others do clockwise. Therefore, it can
be concluded that the loops which is to be removed have a
counterclockwise direction in this application. This method is
based upon the fact that the boundary profile is directed
in the clockwise direction and the island profile in the
counterclockwise originally before the offset procedure start.
Of course, if the direction is assigned in the other way
from the beginning, the direction criterion for the removal
must be reversed. The direction checking for a loop can be
made easily by using the control points defining the loop. Eg.
(4) gives the area(area vector) surrounded by a polygon
in Figure 2.9 where £ is the unit vector in Z-direction.

904

(4)

M =

Ak = 7% Tixy

1
2

i=1

The sign of A depends on the direction of the vertices P;.
Suppose the {P; } be the control points of a loop. From the
basic properties of the B-spline curve[27], the control points
are ordered in the same direction as the loop and are quite
similar in shape to the loop because they are subdivided during
the curve offset procedure. If the value of A of a loop is
greater than or equal to zero,
counterclockwise direction and it has to be removed. Note that
the island profiles are parametrized or directed reversely
compared to the boundary or lake profiles in this work. So,
the loops that have negative value of A should be removed for
the island profiles. There is an exceptional case where this
removal method cannot be applied. If the loops are nested so
that one small loop is contained in the other bigger one as
in Figure 2.10. Both the loops have the same directions, in
which case the decision cannot be made. This nesting problem
occurs at the concave portion of a profile when the radius of
curvature reduces to the offsetting distance. For the
boundary or lake profiles, the radius of curvature of the
concave portion increases as they are offsetted and the
nesting problem does not occur. For an island profile
containing a concave portion, however, can be nested when
offsetted. In this case, the only one loop with the longest arc
length should be kept by removing all the others. The arc
length can be approximated easily by the perimeter of the .
control polygon.

the loop must have a

Figure 2.9 Vector area
Figure 2.10 Nesting problem

2.3 Calculation of the CL data

The CL data are the 3-D Cartesian points through which
the tool tip is to trace successively. For three axis NC milling
machines, only the X,Y and Z coordinates will be sufficient to
define a tool position. In this work, only the three-axis
machining will be considered. The CL data can be calculated
easily by Eq.(5) for a known tool contact point 7 when a ball-
end mill is used.

Pop(uw) = P(uv) + R (A(y)—4a) 5)
where
For (u,v) : CL data point

#(u,v) : tool contact point on the part surface

R : radius of the ball-end mill

A(u,v) : unit normal vector of the part surface at u and v

d : ool axis vector

for three —axis machine, ¢ = [001]T

The tool contact points can be obtained by intersecting the
bottom surface of the pocket and the ruled surfaces which are
generated by the sweeping of the offsetted profiles along
-Z direction (See Figure 2.11). Thus, the tool contact
points{ CC points) lic on the arbitrary 3-D intersection curve.
Here we have to distinguish between the CC point and the
CL point. The former represents the point lying on the part
surface to be machined, where the tool is in contact, and the
latter is the position of the tool tip which is normally off the
part surface.

There are scveral ways to plan the tool path. Three types
of tool path planning were presented by Choi [18]. The first
is the so-called drive surface method used in APT III, and the
second is to machine along the iso-parameteric curves of the
part surface. The last is to plan the tool path in the
Cartesian coordinates. The last method, so-called Cartesian
machining, can be divided into two groups, i.e. CC-Cartesian
and CL-Cartesian methods. The former method obtains the
CC data by cutting the part surface with a vertical plane and
then calculates the CL data from the CC data , and in the
latter method, the CL data are obtained directly by the
intersection of a plane and the offset surface of the part
surface. Neither parametric machining nor the Cartesian
machining can be used for the spiral-like tool path generation,
and the APT method is not stable and time consuming as
depicted in [18]. Therefore, a new method has been
developed to generate the CL data by calculating the
intersection between the bottom surface of a pocket and the
ruled surfaces generated from the profiles. Here we now
describe the method to calculate ’step lengths’ and ’path
intervals’ with the comparison to the conventional method

Step Length

In the ideal case, the tool have to move in contact with
the part surface continuously. But, in general, a surface
intersection curve cannot be expressed in an analytic form and
the NC machines use linear interpolation between the CL
data points with satisfying some tolerances which limit the
cutting error due to the linear interpolation as shown in
Figure 2.12

Before the method developed in this work is presented,
the conventional methods to calculate CL data and step
lengths will be discussed. Faux and Pratt[19] describes the so-
called minimum distance iteration method used in APT III,
which is time consuming and may even fail to converge for an
irregularly curved surfaces. In this method, the part surface is
intersected by a plane called a drive surface and the tool moves
in contact with both the drive surface and the part surface.
The step length is defined by Eq.(6).

offsetted profile

Figure 2.11

L =2V2p8-8 ()

In this equation, the intersection curve between the two
neighboring CC points was approximated to be a circle with
radius equal to the radius of curvature of the part surface as in
Figure 2.13. The distance D between the current CC point and
the check surface as shown in Figure 2.13 and 2.14 is calculated
by Eq. (7). Here the check surface is a plane normal to the
tangent vector at the current CC point and passing
through the next CC point to be obtained as shown in Figure
2.14.

D=rL(1-2) ™

p

Once the value of D is computed by EQ.(7), the following

equations are solved simultaneously to get the parametric value

of u' and v’ correspondingly to the next CC point shown in
Figure 2.14.

[Pu,v) — Plurv)]-Np = O
o ®
[7(u,v) — P(u',v)]-No = D
where
P(u,v) : previous CC point
P(u’,v') : next CC point to be determined
ND : unit normal vector of the drive surface
1\7C : unit normal vector of the check surface

Solving the two nonlinear equations for «* and v' using an
iteration method is not a simple work, because there is no
criterion to guess authentic initial values u’,v'. In the above
method, the next CC point, P(u',v’) was computed by
assuming that the segment between #(u,v) and #(u',v') is a
circular arc. Thus the distance between the two CC points is
not necessarily equal to L. If this distance is bigger than L, the
value of L is reduced by half and the same procedure starting
from Eq.(7) is repeated. In another Choi’s work[18], the tool
path is planned on x-y plane, where the pre-defined
distance d between the sampling points is fixed(see Figure 2.15
). This method cannot get economic CL data because for
even a nearly flat part surface, too many CL data are to be
calculated where only two CL points can cover.

In this work, the CL data is calculated by intersecting the
bottom surface and the ruled surfaces generated from the
profile. Two tolerances are defined in this work and they
determine the positions and the numbers of the CL data
points for a given tool path. The first is the allowable
deviation, e, between the interpolated line and the . true
profile when viewed above and the second, 8, is for the

ﬁ é = Figure 2.13 Calculation of step length

Figure 2.12 Allowable tolerance and step length

Figure 2.14 Determining the next point

z n, "z
Part surfoce 2= f(x, y)

|-‘— Tool path on
surface

¥

pianned on
xy-plone
x

Figure 2.15

“bottom surface as illustrated in Figure 2.11. Using these two
tolerances € and 3, we have to calculate the *best’ CL data (
ie. the least number of CL data points satisfying the
tolerances). In this method, the subdivision method
[20,21,22,23] is used, i.e., both the patches are subdivided
to be approximated as a small planar quadrilaterals and the
intersection points are obtained by intersecting the
quadrilaterals as shown in Figure 2.16. Actually, these
points obtained by the subdivision method can be used as
a good initial values for a Newton-Raphson method for a
better accuracy by using the following three equations (9)
and one of (10).[23]

F(u,v) = R(s,1) ©)

v = constant

[N R

v = constant (10)
s = constant

t = constant

where
F(u,v) : the botiom surface of a pocket

R(s,t) : the ruled surface

The initial values are good enough that the convergency is
generally guaranteed with only a few iterations. The basic
idea to calculate the CL data are based on the subdivision
surface intersection algorithm in which the patches are
approximated as planar quadrilaterals during the process.
There must be some criterion values determining whether a
subdivided patch can be approximated to a plane or not for
each surface in that routine. If the step length tolerances, i.e. &
for the bottom surface and e for the ruled surfaces are
substituted for the criterion value, then it may be possible that
the resulting intersection points are the CC points satisfying the
step length tolerances.

The above procedure can generate economic CL data
adapting to the curvature of the bottom surface of the
pocket automatically, without calculating the actual curvature
which requires the calculation of the first and second
differentiation of the surface. These method can also be
applied to the Cartesian machining(Figure 2.17), where
the vertical plane intersects the part surface. Through this
method, we can get reliable and near optimal CL data with
little computation time.

Figure 2.16 intersection using subdivision method ~ Figure 2.18 Path interval

Path interval (g,)

Cusp height (#)

Path Interval

The distance between the tool paths are termed as a path
interval. If the bottom surface of the pocket is flat, the
path interval is constant(tool radius R, for example) for all
paths. But, for a free-formed bottom surface, the path
interval may be different path to path, depending on its
radius of curvature and the given tolerance of scallop height (
or cusp height) shown in the Figure 2.18. Calculating
the path intervals for the parametric or Cartesian
machining has been dealt in many publications[8,18,10]. In
this work, the path intervals are calculated in the similar
way for the spiral-like tool path generation. The procedure
are described step by step for a given cutter contact point.

1. Calculate the normal vector B and the tangent vector T
of the iso-parametric curve in s of the ruled surface at the

CC point. (See Figure 2.19)
2. The radius of curvature used for the path interval is that

of the normal curvature of the intersection curve between
the bottom surface and a plane which contains the
vectors, B and B xT. If we denote the intersection curve
P(t), then from the relation,
mT = (ra+ry)t = (r Tyi+(r,-T) =0
we can get the ratio 4 and v by (11
u:v = i'v~f‘ L - (ru~f) (12)
3. Then we can calculate F using equation (11)
Fo= Pa+ Ry
4. The curvature of the intersection curve can be
evaluated as follows.

.T[.
a [D]la
= T*] (13)
2 [Gla
1 APy, A-F,
0, AF,
[G] _ [ru-ru 7P, (15)
l J ru'rv rV.rV
p radius of curvature of the curve
a = [uv]’

5. Now a distance | (see Figure 2.19) can be calculated
using the equations (16).

2 VoRK — K ==
pVAR + p) (h+p) — {0+ 2Rp+ (h+p) p*
(R+p)(h+p) (16)

R : radius of the tool
> allowable scallop height

o

p - radius of curvature

-wa—-—— Cutter path
-~

Surface /" part surface

/,

Figure 2.17 Cartesian machining

Then the tangential direction d can be calculated by

I\/Ez—lz/Zp p# e
d =] _ an
p = >
6. Then the path interval W can be calculated.

W = d|Br| (18)

The above calculation is performed for every tool contact
point of a tool path and the smallest W is chosen as the path
interval, i.e., the offset distance for generating the next
profile.

2.3 Determination of Cutting order

After the offset procedure is completed, the calculated CL
data must be sorted in the machining sequence. Let’s make
it a rule that the machining starts at the inner-most point of
the pocket, and expands its move outward (i.e., toward the
boundary of the pocket). The offsetted profiles and their
corresponding CL data can be expressed as a tree structure as
shown in the Figure 2.20, where each node denotes a profile
and the branches represents the causality between the two
profiles, that is, the lower node(s) is(are) offsetted from the
upper node(profile) connected by the branch. Therefore,
each depth of the tree represents each offset step respectively.
For example, at the fifth offset step, 6 and 7,8,9 profiles exist
that are generated from the previous profiles 4 and 5,
respectively, The above example in Figure
2.20 terminated its offset procedure at its tenth step. Note that
the CL data for the island profile were not taken into account
because the offsetting procedure of the island profile
corresponds to the machining sequence and no sorting is
required. The CL data of the island profiles are stored in an
another separate array CLISL (Figure 2.22), and these CL
data must be used in machining prior to the others. The tree
structure is stored in an array ICLPTR as in Figure 2.21.
The CL data corresponding to the boundary or lake profiles are
stored in CLDAT array (Figure 2.22). Now we describe the
steps to get ordered CL data as follows.

1. The pocket starts its machining along the island profile
CL data stored in the CLISL array.

2. The deepest node of the tree (for example profile 23 in
Figure 2.21) is machined first, and its father (previoys
profile) is machined next. This tree-climbing-up continues
until a node with (a) brother node(s) is met. (node 9 in
this case) The brother node stands for the profile which
has a common father profile. For example, node 9 have
two brother profiles 7 and 8.

3. If a node has its brother profile and the brother profile is
not yet machined, the next profile to be machined is the
deepest node of the brother (node 17 or 16 in this case)

4. The similar procedure as in step 2. and 3. are repeated
until no father is detected.

Following the previous steps results the machining
sequence for the example in Figure 2.2] as below :

23-.22-21-18-+13+9-+17-+12-+8-+16~-11-7-5-20
-15-19-14-10-6-4~-3-2-1

907

1 step

ruled surface

2 step

3 step

4 step O
5 step
6 step
7 step
8 step
Figure 2.19 9 step
10 step
Figure 2.20 ordering tree

Cl{;mn(cr to
DAT amay

Fpointex to
ather node

pointer to
Brother node

inter to

No. of
CL data on node

b

310 3;5 2) 5 4\%
A

Figure 2.22 CLDAT (3,*) Figure 221 ICLPTR (5,*) array
or CLISL (3,*) array

3. CASE STUDY

A pocket of Figure 3.1 has twelve boundary curves and an
island which is composed of eight curves. The bottom surface
of the pocket is a smooth convex cubic Bezier patch. The
dimension of the pocket is about 200 x 200 (mm).

Tool radius : 6.0

e :05

8 :05

cusp height : 0.4
No. of CL data : 633

Figure 3.1

{1
2]
k)
[41
[51

{6

7
[8]
(9]

[10]
f11]

[12]
[13]
[14]
1]

[16]

REFERENCES

CALMA NC Milling Applications User’s Manual,
Calma company

CATIA User’s Manual, IBM, 1984

H. Persson, "NC machining of arbitrarily shaped
pockets”, Computer-Aided Design, Vol. 10, No. 3,
1978, pp. 169-174

M. E. Mortenson, Geometric Modeling, John Wiley &
Sons, 1985

D H Kim, "Calculation of economic CL-data for
sculptured surface machining", MS thesis, KAIST, 1984

T H Lee, "Free-frmed surface design and NC machining
using a cross-sectional method”, MS thesis, KAIST,.
1985

C S Jun, "NC machining of sculptured surface from 3D
measuring data”, MS thesis, KAIST, 1985

B K Choi, "Surface modeling and 3-D NC machining”,
Banghan pub. 1985

G C Loney, T M Ozsoy, "NC machining of free form
surfaces”, Computer-Aided Design, Vol.19, No.2, 1987

Lee, S C, "The tool path calculation for the NC
machining of a bounded free-form surface”, MS thesis,
Seoul National University, Seoul, Korea, 1988

W Tiller, E Hanson, "Offset of two-dimensional
profiles”, IEEE Comp. Graph. Appl. Vol. 4 No. 9 1984
Pp- 36-46

S Coquillart, "Computing offsets of B-spline curves",
Computer-Aided Design, July, 1987

C de Boor, "On calculating with B-spline”, J
Approximation Theory, Vol. 6, 1972, pp. 52-60

C de Boor, "A practical Guide to splines”, Springer-
Verlag, 1978

L L Schumaker, "Spline functions: basic theory", John
Willey & Sons,1981

W Tiller, "Rational B-spline curve and surface
representation”, IEEE Computer Graphics and
Application, 1983, pp. 61-69

908

(17

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

W Boehm, "Inserting New knots into B-spline curves”,
Computer-Aided Design, Vol. 12, No. 4, 1980, pp.
199-201

B K Choi, C S lee, J S Hwang and C S Jun,
"Compound surface modeling and and machining”,
Computer-Aided Design, Vol. 20, No. 3, 1985, pp.
127-136

I D Faux and M I Pratt, "Computational geometry for
design and manufacture”, Ellis Horwood Ltd.,
Chichester, W. Sussex, UK, 1979

E Coehn, T Lyche and R Riesenfeld, "Discrete B-
splines and subdividsion techniques in computer aided
geometric design and computer graphics”, Computer
Graphics and Image Processing, Vol. 14, 1980, pp. 87-
101

Q S Peng, "An algorithm for finding the intersection
lines between two B-spline surfaces”, Computer-Aided
Design, Vol. 16, 1984, pp.191-196

D Lasser, "Intersection of parametric surfaces in the
Bernstein Bezier representation”, Computer-Aided
Design, Vol. 18, 1986, pp.186-192

P A Koparkar and S P Mudur, "Generation of
continuous smooth curves resulting from operations on
parametric surface patches”, Computer-Aided Design,
Vol. 18, No. 4, 1986, pp. 193-206

W Boehm, "Generating the Bezier points of B-spline
curves and surfaces”, Computer-Aided Design, Vol. 13,
No. 6, 1981, pp. 365-366

L Piegel, " Representation of rational Bezier curves and
surfaces by recursive algorithms”, Computer-Aided
Design, Vol. 18, 1986, pp. 361-366

J E Bobrow, "NC machine tool path generation from
CSG part representations”, Computer-Aided Design,
Vol. 17, No. 2, 1985, pp. 69-75

W Boehm, G Farin and J Kahmann, "A survey of
curved surface methods in CAGD", Computer Aided
Geometric Design, 1984,

