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On the singularity of the matrix sign function algorithm
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Abstract: Some properties of a matrix containing at least one
pair of purely imaginary eigenvalues in thc matrix sign function
algorithm are explicated. It is shown that such a nonsingular
matrix can be end up a singular matrix in the matrix sign
function algorithm independently of the matrix condition. The
result can be utilized to identify and locate all the eigenvalues
theoretically.

1. Introduction

Matrix sign function algorithm has been used widely in the
various systems engineering fields[1-5]. The standard matrix
sign function algorithm proposed by Roberts|[1] is represented
by the following recursive equation
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with initial value Sy=A. Then this algorithm can compute
sign(A). Roberts[1] suggested that convergence of the standard
algorithm (1) can be improved by using the recursive equation
-1
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with suitably selected scalars o, and B,. Balzer[6] generalized
the selection method of , and B, under the constraints that

a, + B =1 and limo; = lim B, =
ke ~
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and proposed the optimal values.

It is easy to show that this algorithm is satisfactory for
complex and repeated eigenvalues. However, the algorithm is
undefined in the case where a matrix A has either zero or
purely imaginary eigenvalues. Since a zero or a pair of purely
imaginary eigenvalues may not guarantee the algorithm
convergence, a property of the matrix sign function algorithm
for the matrix having these eigenvalues should be clarified. It
can be demonstrated that the matrix sign function algorithm
results a singular matrix though an Sg is not singular, if the
matrix contains the purely imaginary eigenvalues. Such
singularitics are independent of the condition of the matrix 4.

2. Main Result

A singular matrix can be easily identified in the matrix sign
function algorithm because its inverse matrix does not exist. A
matrix having at least one purely imaginary eigenvalues can also
be easily identified in the matrix sign function algorithm due to
the methods which will be stated in this section.
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Lemma 2’2-1. If an nXn matrix A has k eigenvalue pairs = jm,
then det(A%+m?1)=0.

Proof. Assume that A has an eigenvalue pair =jm. Then its
pseudo-Jordan canonical form M~ "AM is given by

4, 0
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where J, is an (n~2)X (n~2) Jordan canonical form and

0 m]
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Now,

3+ m 0

A
M A2 MM = M“‘[ ,

0 ch+m21
where A3+m21 = 0. Thus, det(A2+m21)=0.

It equally holds for the matrix having & repeated eigenvalue
pairs = jm. It completes the proof. Q.E.D.

Theorem 2-1. A nonsingular matrix A has at least one
eigenvalue pair +jm if and only if (A + m”~ A7) is singular.

Proof. (If part) Let A be a pseudo-Jordan canonical form of
A. Assume that A has at least one real eigenvalue a. Then,
(A+m*A™") has an entry (a*+m®)ya, which cannot be zero
unless a=0. Since A is nonsingular by the assumption, a#0.

Assume that A has an eigenvalue pair a+jb. Then A has a
following pseudo-Jordan block of the form

[ab
—ba

Thus, (A+m°A ") has a following pseudo-Jordan block

b
a+m? b—m? 32
a+b a“+b
a
—b+m2 2 a+m? 75
a‘+b a“+p°

The above pseudo-Jordan block becomes singular if the
following relation

a
(a+m2

b
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Y+(b—m =0
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holds. The .pseudo-Jordan block of (A+m2A'1) becomes
singular only when ¢=0 and b=m since A is nonsingular. It
equally holds for the matrix having repeated eigenvalue pairs
+jm, too.

(Only if parr) Since A has at least one eigenvalue pair = jm,
its characteristic polynomial p(s) is of the form

p(s) = (> + m?) 4(s).
By Cayley-Hamilton Theorem,
p(A) = (A% + m®1) q(A) = 0.

From Lemma 2-1, det(A2+ m21)=0. Since A is nonsingular, we
have

det(a +m?A")=0.

It equally holds for the matrix having repeated eigenvalue pairs
+jm, too. It completes the proof. Q.E.D.

The above Theorem 2-1 states that although a matrix A is
not singular, S, can be singular. That is to say, a nonsingular
matrix having at least one purely imaginary eigenvalue pair =1
in the standard matrix sign function algorithm (1) or =jv/Byo,
in the accelerated matrix sign function algorithm (2) generates a
singular matrix §;.

Assume that A_ has a pair of purely imaginary eigenvalue
pair xjm, having the form (3) such that

0 m,

AC = [-mo 0]

Then the standard matrix sign function algorithm (1) for the 4,
is of the form

Sk = 1 ’

Thus,
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If m,= =1, then m =0 from (4). That is to say, if a matrix A_
has an eigenvalue pair =1, then §; of (1) becomes singular. A
sequence wy that drives m, to be zero at the very (k+ 1)th step
can be identified from the inverse mapping of (4) such that
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with u, = sz + 1. Thus §, with §; = A_ having at least one
pair of purely imaginary eigenvalues +jw, obtained from the
above recursive equation (5) becomes singular at the very
(k+1)th step in the standard matrix sign function algorithm (1).

Wipp = Wi = Vi, wo= z1

Similarly, the accelerated matrix sign function algorithm (2)
for the A, is of the form

By
0 o —
my

, Sp=A
By 0

Sk+1 ¢’
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Thus,

O
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If m==xvByoy, then my ;=0 from (6). That is to say, if a
matrix A, has an eigenvalue pair =jvByag, then §; of (1)
becomes singular. A sequence w; that drives m, to be zero at
the very (k+1)th step can be identified from the inverse
mapping of (4) such that

™

with u, = sz + oy Thus S, with §;= A_ having at least
one pair of purely imaginary eigenvalues xjw, obtained from
the above recursive equation (7) becomes singular at the very
(k+1)th step in the accelerated matrix sign function algorithm

Q).

The A, that makes §; to be singular at the very (k+1)th step
is not unique. Since the my’s have two values in the equations
(5) and (7), the number of m,’s that drives S, into a singular
matrix is 2", At any rate, the purely imaginary cigenvalue
pair can be identified and located at the (k+1)th step in the
matrix sign function algorithms (1) and (2) or from the
Theorem 2-1. It can be applied to identify and locate the
ordinary eigenvalue pair A z jm, theoretically by shifting the
original eigenvalue pair +jm, by A such that

N |
Wirr = (W = Vigdog -, wy = 2v/Byag

A+ N

where \ is a known scalar.

3. Conclusion

Some properties concerning the purely imaginary eigenvalues
in the matrix sign function algorithm have been explicated. It
should be mentioned that a nonsigular matrix can generate a
singular matrix in the matrix sign function algorithm
independently of the matrix condition. 'That is to say, even a
well-conditioned matrix can generate a singular matrix in the
matrix sign function algorithms (1) and (2). These properties
can be used to identify and locate all the eigenvalues
theoretically.
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