A A

}$ E-3 nl’ ,‘11

ORI I
BT ‘ﬁ 3

'88 EREUHIEHBMZ Em T 1988. 10. 21~z

Aofzl o) nsh 4 AW s

&
!

A TR Aol A

The Architecture of A Multiprocessor Based Programmable

Controller With Emphasis On

its System Bus

°Jongfil Kim and Wook Hyun Kwon

Dept. of Control

and Instrumentation Engr,

Seoul National University

ABSTRACT The architecture of a multiprocessor based
programmable controller(MBPC) is presented. It
consists of a host processor, processing elements,
and Input/Output processors. Some problems in imple-—
menting such architecture are also described. To
resolve them, we proposed and presented INFOBUS, a
system bus for MBPC. The performances of INFOBUS and
MBPC are analysed using both analytic medels and
simulations. Some results from the analysis will be
given and validated. In case of 50% of BTI(Block
Type Instruction) and 4 processors, the scanning
time is shown to be 0.1%msec/Kstep with some rea—
sonable assumptions.

1. Introduction

Parallel processing have received wide attention
to overcome the limitation of computing systems,
especially in processing speed. But we should keep
in mind the sequential nature of most conventional
computing systems. It imposes certain problems on
how tasks are executed, on how the system is cons~
tructed, and on how information can be exchanged.

Moreover, the most important factor limiting com—
putational speed is not availability of appropriate
hardware, but rather the difficulty of managing the
complexity of algorithm formulation and programming
and of finding parallelism{1].

In real time applications, such as process con-
trol and sequence control, however, the process it—
self is highly parallel[2]. The concepts of dis-
tributed control or the decentralizcd control
being researched and implemented in
control systems{[3][4].

In sequence control applications, the development
of new and more sophisticated programmable
trollers(PC’s) will have a major and significant
impact on that field. But the movement of PC’s into
larger and distributed systems, has brought new
challenges, and requires new architecture, such as a
special hardware structure and parallel processing.

Fortunately, the PC has some parallelism in na-
ture. Updating input and output(I/0), solving user
supplied application program, and communicating with
external worlds are the examples of concurrently ex—
ecutable tasks. Such parallelisms has been exploited
and already adopted in many available PC’s. TI 560
/565 system is a typical example[19], which solves
sequence programs concurrently with the updating of
I/0. With this approach, we can reduce the time
required to update T1/0.

are:
many process

con--

The time required to solve application program,
however, is not so simple. TI 560/565 can be config-
ured to have two processors for solving the applica-
tion program, but it does not utilize complete
multiprocessing. It only separates the discrete part
and the analog part of an application program and
executes them concurrently. There may be another
approach to do this. A special-purpose processor was
adopted in Modicon 584 PC system[20]. It uses a bit-
slice architecture with microprogramming method,
mainly to reduce the time to solve an application
program and to meet the bit data structure of the
sequence programs used in PC. But there
allel structures.

There are some restrictions on implementing MBFC.
First of all, we should overcome the difference in
the data structure of PC and general purpose micro—
processors. Such incompatibility has brought ancther
problem; improper structure on implementing with
microprocessors. And, since PC's have to handle
large amount of data, the PC's reveal other basic
problems in multiprocessor environment; distributing
tasks, exchanging information, and scheduling.

For these reasons, MBPC will require special
structures. In this paper, the special hardware,
which can be a candidate for the structure, will be
described briefly(21}. Such hardware was designed
and now iy available in our laboratory. Jsing it, it
is expected that we can overcome the incompatibility
problem mentioned above. In addition, INFOBUS, a
specially designed system bus, will be described
too. It will be shown to be well suited to MBPC by
simulating with exact data taken from existing hard-
ware.,

There are many parameters to evaluate the perfor-
mance of PC’s. The processing speed, the capacity,
and the reliability are the most significant
indexes. In this paper, however, we will emphasis on
the scan time of PC and the performance of INFOBUS.

In Section 2, we will describe some restrictions
of PC on implementing multiprocessor architecture.
In Section 3, we will describe INFOBUS, which was
designed as a dedicated system bus for the multipro-
cessor based PC. And the mean data transfer time
through INFOBUS will be analyzed and simulated based
on the exact data taken from the existing hardware.
In Section 4, MBPC will be introduced, and some of
its basic characteristics will be described. In Sec—
tion 5, the model of MBPC will be constructed bhased
on some reasonable assumptions, and simulated using

are noe par-

407

SDL/SIM package[17][18]. Some
will be given and validated.

simulation results

2. Some Restrictions on implementing MBPC

The PC was originally developed as a sequential
control device to replace electromechanical relays
in the factory. From the early stage of PC, it was
used by the factory engineers, who design, operate,
and maintain the control systems. Since ladder dia-
gram is a method of representing a system of relays,
switches, solenoids, lamps, etc. and it is easily
understood by the factory engineers, it has been
chosen as the programming language. By now, the lad-
der diagram has been enhanced by the PC manufactures
to add program flexibility and sophistication of a
general minicomputer[5]. Thus it is assumed that the
programming language of our MBPC is the ladder
diagram.

Since each data processed by PC corresponds to
the relay, switch, lamp, etc., it can be represented
by two states; OFF and ON or "0" and "1". In other
words, the data operands of PC are bit addressable.
Since, however, most of microprocessors have byte or
word type data structures, it is not easy to con-
struct an efficient PC system by using microproces—
sors without special structure. We will call this
kind of problem as data type incompatibility problem
throughout this paper

Suppose that we transformed the bit data struc-
ture of PC into byte or word type of most micropro-
cessors, then the amount of data needed to hold the
state of input and output is unnecessarilly large.
For example, in case of byte type,
times than needed in bhit type. In addition, it is
that the time needed to exchange the
results among the processors in MBPC also requires
the same amount.

Next
ladder

it requires 8

expected

the
Processors.

problem arises f{rom sharing of the
diagram among the The output
points in a ladder program are distributed randomly.

For example, "storing into Y0O00Q" locates at the
1234~th instruction, while "storing into Y0001"
locates at the 7-th instruction, etec. Thus if we

agsume that a PC system can process bit data strue-
ture directly, then each processor probably may hold
the data arranged in the form shown below;

Y0015 Y0000
AlB| « « o« |IB(B N T T
Y0031 v0018 Y1023 Y1008
Bla]l . T8 (B1B] - + « [a]4l
Fig 1. The output data arranged in PC
The ladder diagram has been divided and dis—
tributed to the two processors, A and B. The final

results of the ladder diagram allocated to the pro-

cessor A are Y0015, Y0015, Y0032, etoe., so processor
A may change them. Likewise, the processor B may
change Y0000, Y00Q0l, Y0014, etc. And in the course

of solving, each processor may require the output
data not a part of their own. This fact implies that
the whole output data should be shared among all the
processors in the system. For this reason, the
exchange of the output results of each processor is
necessary. It is, however, no so easy to do that.
Such communication will be performed on the 16 bit
basis; for example, a 16 bit data, which includes
Y0000 through Y0015, will be transfered. These data,
however, cannot be used directly. The following pro-

i between the source

cesses should be done to get proper results. Each
processor clears the bits in its result which are
not parts of its own, and transfers them to the oth-
Then the receiver performs bitwise OR opera-
tions between received data blocks and its own data
block. But this process is time consumming and inef-
ficient. In addition, if we use byte or word type
structure, that problem is more fatal

ers.

3. INFOBUS - The Information Bus

To construct a multiprocessor system, a system
bus is required through which data communication is
performed. So we proposed INFOBUS which is a dedi-
cated system bus for MBPC. Main objectives of
INFOBUS are to resclve the restrictions stated in
Section 2.

The Figure 2 shows the signals and the basic
structure of processing element(PE) on INFOBUS.

INFOBUS PE
TPM access signals
' Transfer control signals TPM
Arbitrary transfer signals = CPU
System management signals "
Interprocessor signals EP?-_
<«

Fig. 2 The signals in INFOBUS

INFOBUS has the following 4 major characteristics

—~ Time—-Slot shared bus

- Two-port—memory communication

~ Multiple transfer operation

— ORed write transfer operation

There are many methods by which a system share a
common system bus[6]. In case of INFOBUS, the time
is divided into many slots and each PE gets the time
slot sequentially. We will call the owner as a mas-
ter and the others as slaves. The slaves are pre-
vented from accessing the bus, while the master use
it exclusively. The order of the master is scheduled
by the system controller in MBPC system.

Each PE on INFOBUS should have specially designed
two-port-memory(TFM). Through TPM, the PE’s can com-
municate and exchange information with each other.
in multiprocessor environment, a task should be di-

vided and allocated to all the PE’s. There are many
methods to do this[7][8]. As stated in Section 2,
however, it is almost impossible to divide the

task(the ladder diagram) into some blocks which con-
Lains sequ: .tial addressed output points. Therefore,
it is too ifficult to divide the task not deterio-
rating the system performance.

Again refer to Fig. 1 and Section 2. Processor A
produces N bits of output points which are randomly
distributed, and transfers them to the other PE’s.
Then next processors do the same thing sequentially.
After the end of communication, each PE should do
logical OR operations among these data sets prior to
use them as mentioned in Section 2. Because such
data are Loo large, this procedure seems to be time-
consuming and inefficient. To overcome this situa-
tion, the concepts of multiple transfer and ORed
write transfer have been introduced. Multiple trans-
fer can be stated that a master processor transfers
a word of data to many other processors’ TPM at one
bus cycle simultaneously. And ORed write operation
is a kind of read-modify-write operation which
enables us to perform bitwise logical OR operations
and destination data at one

408

memory write cycle. Both operations can be imple—
mented by adding some logic circuits into the TPM.
These two concepts are the features that make
INFOBUS to be well suited to MBPC. Combining them,
we can enhance the speed of exchanging results among
PE’s, hence some restrictions described in Section 2
are eliminated.

It is required for INFOBUS to have real-time pro—
cessing capabilities, because PC is a real-time pro-
cessing system. To do this, INFOBUS has arbitrary
transfer operation, by which the PE’s can transfer
information at any time, and some system management
signals by which the system can transfer real time
control information,

The mean transfer time of INFOBUS is an important
parameter to the system behavior. Because memory
cycle depends on the type of processor, a processor
model has to be modeled. In this paper, we assumed
that MBPC model is based on the working system[16].
We designed the PE using 68000 microprocessor, and
the TPM using MOS static RAM with 120 nsec access
time. And INFOBUS interface circuits are constructed
mainly using TTL logic devices. Based on these
assumptions we can get the transfer rate of INFOBUS
in case of some conflicts.

The clock frequency of each PE is 8 MHz and we
designed TPM using 22.12 MHz clock as its basic ref-
erence timing. The propagation delay time or port
switching time in TPM is calculated from the
circuits: the typical time for switching from port
to port is 89.6 nsec .

Using this and the parameters taken from the
68000 data sheets, we could simulate the behavior of
exchanging information through INFOBUS. The SDL/SIM
has been used in this work, which can describe the
discrete time events on the state transition ba~
sis[17]1[18). We assumed that all the competing PE’s
are trying to access the TPM infinitely. One and
only one master is performing multiple ORed write
transfer to many TPM’s on INFOBUS, while the other
slaves are transfering data from their own TPM to
local memory.

A typical block transfer routine written in 68000
assembly language is shown below:

[program 1]. A block transfer program
set: move #(word size/2-1),d7 ; how many words?
move.l #source_addr, a0 ; master = local
; slave = TPM
move.l #destination_addr,al ; master = TPM
; slave = local
loop: move.l (a0)+, (al)+ ; start transfer
dbf d7, loop ; transfer
next: ; next operations

We counted the mean clock cycles required to exe-
cute the [program 1}, and it was shown that in case
of no contention 15 clocks to transfer one word or
15/16 clocks to transfer one bit were required.

In real situations, however, the contention
increases as the number of competing PE’s increases.
In our model of simulations, it 1s assumed that
there are no contentions in local operations. And to
access INFOBUS or TPM, the waiting time is added
according to the exact behavior model of 68000 and
INFOBUS.

The result is shown in Figure 3. The number in X-
axis means the number of competing processors. In
all cases there exits only one master. Hence, for
example, 3 in X-axis means that one master and two

slaves are competing for INFOBUS or TPM. From the
graph, it is observed that the waiting time are neg-
ligibly small wuntil there are four processors(one
master and three slaves). And there are sudden
increases in the mean transfer time at 5 and 8. The
mean, transfer time increases rapidly after 8. From
the result we can state that the access cycle of the
master and slave(s) are synchronized and stabilized
after some contentions in case of less than 8,
because all PE’s execute the same routines with the
same cycle time. But after 8, the contentions
increased very rapidly.

From the results, we can conclude that if we can
schedule the number of PE’s competing to access
INFOBUS less than or equal to 4, there are no
waiting time in the average.

Mean Word Transfer Time of INFOBUS

are

[t
o

5} Moutes Tranafer T
+ Slave franuter ¥

NN
w “ >

»

\

E

Meor Word Tronster Time (in y—saconas)
Z ~

E

Numbar Of Prcessor

Fig.3 The mean access time of INFOBUS and TPM

4. The architecture of MBPC

MBPC is a programmable controller system based on
the multiprocessor architecture. It consists of a
system controller, discrete processors, I1/0 proces—
sors, and analog processors. INFOBUS is used as the
system bus for MBPC. The system controller super—
vises the entire system and maintains INFOBUS. The
discrete processors solve the ladder instructions,
and I/0 processors processes the input and output
processing with the external. The analog processors
perform the analog control functions such as PID. A
typical configuration of MBPC is shown in fig.4.

System Controller Discrete Processor 1 Discrete Processor N
p

1

CAC| l t C
YLK

]
Fig 4. A typical contiguration of MBPC

Based on the above configuration we will analyze
the performance of MBPC. The most significant per—
formance indices are the scanning time and the uti-
lization of INFOBUS. Prior to the simulation of our
model, the scheduling principle should be chosen.
There are many scheduling techniques in multiproces-—
sor environments[12]{13][14]. In case of MBPC, the
wumber of processors competing to use TPM may be

° 17
ii.'

409

restricted to be less than 4 from the result of Sec—
tion 3. But in this paper, we adopted the simplest
form of scheduling, the first-come—first-served
discipline, which schedules the master of each time
slot in chronological order of arrival{15]. The
optimility of such scheduling may be no good, but it
is so simple that the software overhead for schedul-—
ing can be minimized and it is easily implemented in
real time applications. The Figure 5 shows the
scheduling principle used in our model of MBPC.

[Updil e Wait
Lol bupal aaclays

i) ‘ LAY l

Vi Sat

v il

()

2

Tl

[RN
QLAY U(AY

Sl Wt
vt

UlA)Y,{n)

ol | Baeat transtos Sotve daddo
Q) O, e, o))
C{) w(eQs), e, o))

rod
o), ey, L)
Figure 5. Scheduling of MBPC
The model of processing element for MBPC can be
chosen with any structure. In our model, we chose a
Logic Solving Processor(LSP)[21] to resolve the data
type incompatibility problem. It will be described
briefly later.

5. Simulation of MBPC
To construct the simulation model of MBPC,
assumed the followings.
- The mean transfer time through INFOBUS is
assumed to be the result of Section 4.

1t 1s assumed that the analog processors are
not included in the model. This assumption is
acceptable because they operate independently with
other PE’s,

It is assumed that one of the PE’s acts as the
system controller, and the overhead time as a system
controller is negligbly small

- The master of time slot performs multiple ORed
transfer using the program 1 shown in Section 3, so
the data produced from the previous simulation are
assumed.

- It 1is assumed that each PE runs and accesses
its own local memory with no waits.

- It is assumed that each IOP can update inputs
and outputs at the rate of 1Mbps.

~ MBFC is assumed to solve total of 64000 steps
of ladder instructions with 8000 input, 8000 output.,
and 8000 control relays.

- Ladder diagram is identically distributed among
the discrete processors. Nstep shown below is the

we

number of steps which o discrete processor should
solve:
Nstep = Ntotal/Np —— — 1
where Ntotal : total steps of ladder instructions

Np the number of discrete processor

— With appropriate software, we can allocate the
control relays to the discrete processors in sequen—
tial order, but the output relays to be solved by
each discrete processor cannot be allocated so, as
stated in Section 2. Thus they should transfer all
the data which contain the outputs that are not part
of their own, clearing them as stated in Section 2
and 3. Using ORed transfer, only the unmasked data
are effectively transferred. The IOP’s can share the
input and output data with equal length.

- It is also assumed that the discrete processors

which
corre—

should service 3 kinds of real time clocks,
occurs every 1 ms, 10 ms, and 100 ms. The
sponding service routines was analyzed and the Cl?Ck
cycles was calculated. This yields the service time
of each; 8, 12, 16 clocks respectively.

the mean time of time
as follows:

We can represent E[TSdsp],
slot of each discrete processor,

E[C1] = Nc/Np 2a
E[01] = No 2b
E[TSdsp] = (E[C1] + E[01]).Tbx

= {(Nec/Np + No)-Thx ————————————m 2c
where Nc, No the total number of control

relays and outputs

the mean number of control
relays and outputs a discrete
processor should transfer

the mean transfer time of
one bit data through INFOBUS

E(C1],E[01]

Tbx

At local transfer state, a discrete processor has
to transfer all the data in the TPM which was writ-
ten by the other PE’s the previous scanning period
into its own local memory. Thus we can write:

E[Tlocal]l = { Ni + No + N¢):Tbx ——————m———
E[Tlocall]l= No / Niop-Tbx 3b

where E[Tlocall, E[Tlocall]
the mean time of local transfer period of
a discrete processor and IOP respectively

We can divide the input and output relays in a
localized manner, i.e. IOPl1 will handle X0-X511,
while I0P2 will handle X512-X1023, etc. Thus each
IOP will transfer E[Il1] words at its time slot pe-
riod.

E[TSiop] = E[I1]:Tbx = Ni/Niop-Tbx
where E[TSiop] the mean of time slot of IOP
Niop the number of IOFP in the system

Referring to the Fig.5, we can establish some
equations about the scanning time of discrete pro-—
cessor. For each discrete processor, E[Tdsp], the
scanning time of a discrete processor means the time
required to perform the sequence shown in the Fig.5.

E[Tdsp] = E[TSdsp] + E[Tlocal] + E[Tsol]} + &

= (No+Nc/Np)- Tbx + (Ni+No+Nc)- Thx

+ E[fTsol]l + o

= 2E[TSdsp] + (1-1/Np)+Nc:Tbx + Ni:Tbx

+ E[Tsol] + & e -5
where E[Tsol] the time required to solve ladder

'3 : some overhead time, such as RTC

service time and waiting time

If INFOBUS becomes the bottleneck of the system,
then we can write the scanning time to be E[Tbusl].

E[Tbus] = E[TSdsp] + E[TSiop]
= Np+E[TSdsp] + Ni:Tbx ——————mm——— 6
Now we can write down the mean scanning time

E[T], by combining eq.5 and eq.6.

E[Tiop]= E[TSiop] + E[Tlocall] + (Ni+No)/Niop-Sbx
= (Ni+No)/Niop+Tbx + (Ni+No)/Niop+Sbx — 7a
E[T] = max { E[Tbus], E[Tdsp], E[Tiop] } —— 7b
where E[Tiop): the scanning time of the IOP
Sbx tinput/output scanning rates of IOP

410

How to express the time needed to solve the
.adder instructions? There are no standard ways to
express it. So the strategy used in this paper will
be described and formulated.

It is the main objective of PC to solve the lad-
der diagram, which includes pure boolean logic and
block type instructions such as timer,
drum, shift, arithmetic operations etc. Qur model of
discrete processor executes the two types of
instructions with different speed. For this reason,
it is meaningful to express E[Tsol] as the function
of the ratio of block type instructions to the
entire ladder instructions. In addition, the block
type instructions can be divided into basic bleck
type instructions(BBI) and special block type
instructions(SBI). The counters and timers are
included in the BBI which are very frequently used
in most PC applications.

By this strategy, the mean time to
ladder instructions, E[Tsol], can be
follows:

counter,

solve the
expressed as

E{Tsol] = E[Tbool]*Nstep + (Tbbi-Rbbi
+ Tsbi+Rsbi)*Rbtix«Nstep ———————-—— §
where E[Tbool] mean execution time per one
boolean instruction
mean execution of BBI, SBI
the ratio of BTI to the Nstep
the ratio of BBI and SBI to BTI

Tbbi, Tsbi
Rbti
Rbbi,Rsbi

To know E[Tbool], Tbbi, and Tsbi, it is required
more exact data about the hardware and software. It
however, difficult to get such data without
existing system. Fortunately, we can acquire these
data from the project to develop the large capacity
PC[16] accomplished in our lab and enhanced model of

is,

it{21]., The system developed by the project, have
been configured to include a system controller, I/0
processor and a Hardware-Logic-Solver (HLS). And the

enhanced model which is called as a Logic Solving
FProcessor(LSP) contains Boolean Solving Unit(BSU)
which is similar to HLS and a microprogrammed
Register Solving Unit(RSU) to solve the BTI[21].
From the analysis of LSP, we can get the follow—
ing data. BSU can solve the pure boolean instruc—
tions at the rate of 0.07msec/Kstep with 16Mhz
clock. We programmed microprogram routines which im-
plement the block type instructions in RSU of LSP,

and analyzed them and got their mean cycle times in
the form of hypoexponential distribution of order
two:
f(t) = pl-ul-exp(-ul-t)+p2-u-exp(-u2-t)
HE A

To use these data in analytic equations, we eval-
uated the mean of them. From this we can estrimate
that E[Tbbi] and

E[Tsbi] are £.5clks/step and
4.3clks/step, respectively. Using them, we can
rewrite the equation 8 as follows:

E[Tsol] = {0.07 + (6.5-Rbbi + 4.3-Rsbi)
*Rbti.Tclk}-Nstep — —~———————mome 10a

since, Rbbi + Rsbi = 1,
E[Tsol] = {0.07+(4.3+2.2-Rbbi)+Rbti-Tclk}- Nstep

~~~~~~~~~~~~~~~~~~~ 10b
Now, we performs many simulations based on the
above model and assumptions. In all cases, we

assumed that there are 2 IOP in MBPC and 70% of BBI.

411

In the graph, the number of processor means that the
number of discrete processors.

Mecan INFOBUS Access lime vs

Tha Nuwinbur of Pracsauor

the

~

2 < 4%

WX

t

N
e
&

VX 2%
46X x B% YV

NN
e €
g

~
c
<

N

The Mag~ (NFBUS Access Yime in p—mec

186

1.84 i ' T v (e 1

¥ 2 3 + 5 6 7 [
tha Numbier ug Processor
(a)

, Ihe Mean INFOBUS Access Time vs

12 Tha fute ul Bleck isbioctha ()

i a0 M= Np = 2

208 O Hp=4 & Hp=8
u 206 o Ny = 8
.
H
V24
a
£ 202 e
¢ .
B e K\\
. N \
S run . e \\
M

®,

< \/ % N
9 -
[T} ]
z bl B Sy
e 192 ] L b4
I R T =
% v Ta - 8- 9
3
= ran

[

1 ut ' [ T ' v i [ [

1 2 3 4 5 4 7 [ [ 10

The Rats of Block bypa hiatraction(%)

(b)
Fig.6 The mean INFOBUS access time
Figure 6 and 7 show the mean INFOBUS transfer
time per word and the mean TFM access time versus
the number of processors and the rate of BTI.
the graphs,

From
it is observed that these parameters are
gradually increasing as the number of processor
increases, because the contentions to access INFOBUS
and TFPM also increaseas as the number of processor
increases. Again it is observed that the change of
the rate of BTI doesn’t have no effects on the
INFOBUS access.
the Mean TPM Access Time vs

the Humbes of Pro

+ 2x 9 45
ax v W R

The Meor TPM Access Time in y—sec
v
¢ &

The Number of Pracessar



The Mean TPM Access Time vs

the Ruls of Diock lalruction (X)

O Meel o+ Meez
208 ° Np = 4 Iy Np = &
X Hp=8
2 06
H
"' 2.04 -
3
€ 202 4
< _
E 2
£ -
a 1498
H
<196
z
& 1.94
E 192 o
$ e
¢ 19 a8 -
£
.88
.46
1.84 - L B T 1 L] T ) 1
1 2 3 4 5 6 7 8 8 10
The Rale of Block Tyoe Instruction(%)
(b)
Fig.7 The mean TFM access time
The Scanning Time (msec/Kstep)
va. e numper of Procassors
0.8 -
ooo1% + % < 2
0.8+ 4 %% v *
3
x
N
3
H
£
H
g
2
]
§
a
M
£
the mumber of Procassor
(a)
The Sconning Time (msec/Kstep)
w. the ruts of BT (%)
0.8
fe) Np =1 Np = 2
op4 © MNp=4 5 Np=B

X Np =8

The Scanning Time (meesc/Ketep)

The rote of BT ( X )
(b)

Fig.8 The mean scanning time

From Figure 8-(a), it is observed that there are
minimum points in all cases. Those points are the
time where E[Tbus] in eguation 7b starts to be the
bottleneck. These points are the optimal number of
processors. For example, if we want to solve an
application program which contains 40% of BTI, the
optimal number of discrete processors is 4. From Fig
8-(b), it 1is observed that the scanning time is
propotional to the rate of BTI when there are 2 pro-

cessors. In case of 6 or B processors, however, the
scanning time is almost constant because of E[Tbus].
From the two graphs, we can conclude that in all
cases 4 processors in MBPC reveals the best perfor-—

mance.
The Solving Time (msec/Kstep)
ve. the numbw- of Procossors
(X
o 1"\ %2t % O %
a4 & % X % v %
- &7 1
H
g
53 0.8
3
:
£ 0.5
.
£
F s =
2
3
§ 37
2
= 0.2
¥ J& {
a ‘ . . . -
1 2 3 4+ S L] 7 5
the number of Processor
The Sciving Time (msec/Kstep)
v, the rom of 8T (X)
LX)
a Np =1 + Np = 2
0.8 ° Np =4 a Np = 6
x NP = g
a7
o.e
X ]

Tha Salving Time (msec/Kstep)

|
|
: ‘ - : : : {
9 10 20 30 4 50 50 70 a0 90 100
Tha rate of BT ( X )
(b)

Fig.9 The mean solving time of ladder

From figure 9-(a), it is observed that the solv-
ing time of LSP is propotional to the inverse of the
number of processors. Thus we can conclude that in
the view point of ladder solving time it follows the
function 1/n which means the optimal speed up factor
in multiprocessing[15]. From Figure 9-(b), we
observe that the scanning time increases propor-
tional to the rate of BTI as predicted in equation
8.

can

6. Conclusions

The features that make INFOBUS to be suitable for
the multiprocessor based PC’s are described in this
paper. Since the interface circuits of INFOBUS
including the control logic for TPM can be imple—
mented using MST/SSI or custom IC technology. Using
the multiple transfer and ORed write transfer, the
performance of INFOBUS, especially the time for
exchanging data through INFOBUS, is remarkably
enhanced.

We chose a specially designed Logic Solving Pro-
cessor[21) as our fundamental model for processing
element. Some useful and important results about
MBPC are observed from the simulation of our exact

412



MBPC model. Using INFOBUS, the architecture of MBPC
reveals good parallelism in spite of simple schedul-
ing and simple task allocation. These properties are
important properties in implementing actual multi-
processor architecture.

Moreover, the scan time of MBPC is very fast. In
case of 50% of BTI and 4 processors, the scanning
time is 0.194msec/Kstep. In case of TI 560/555, the
scan time is 2.2ms/Kstep, and lms/Kstep in case of
Modicon 584.

References

[1] Vasilii Zakharov, "Parallelism and Array Pro-—
cessing," IEEE TOC C-33, No.l, Jan. 1984

[2] Hibert D. Kirrmann and Felix Kufmann, "Poolpo— A
Pool of Processors for Process Control Applica-—
tions,"” IEEE TOC C-33, No.1l0, Oct, 1984

[3] J.M.Ayache, J.P.Courtiat, and M.Diaz, "REBUS, A
Fault-Tolerant Distributed System for Industrial
Real-Time Control," IEEE AC,AC-23, No.B, Dec. 1978

[4] Khalil M. Zahr, "Design Optimization of Micro-
processor Based Remote Multiplexing Systems," IEEE
AC, AC-23, No.6, Dec. 1978

[6}] Lymam F. Brown, "A Role for Programmable Con-—
trollers in Factory Distributed Control," IEEE Tr.
on Industry Applications, 1A-21, No.4, 1985

[6] M.A.Marsan, G.Balbo, and G.Gonte, "Comparative
Performance Analysis of Single Bus Multiprocessor
Architectures,” IEEE TOC C-31, No.l12, Dec. 1982

{7] Benjamin W. Wah,"A comparative Study of Dis-
tributed Resource Sharing on Multiprocessors,"IEEE
TOC C-33, No.8, Aug. 1984

[8] Richard S. Brice, J.C.Browne,"Feedback Coupled
Resource Allocation Policies in the Multipro—
gramming -Multiprocessor Computer System,"” Comm.
of the ACM, Aug. 1978

[9] D.P.Bhandakar,"Analysis of Memory Interference
in Multiprocessors,”" IEEE TOC C-24,No.9, Sep. 1975

[10] M.A.Marsan,"Modeling Bus Contention and Memory
Interference in a Multiprocessor System," IEEE TOC
C-32, No.12, Dec. 1982

[11] T.Lang, M.Valero and I.Alegre,"Bandwidth of
Crossbar and Multiple-Bus Connections for multi-
processors, " IEEE TOC C-31, No. 12, Dec. 1982

[12] Zvi Rosberg, "Frocess Scheduling in a Computer
System," IEEE TOC C-34, No.7, July 1985

[13] Reinhard Manner, "Hardware Task/Processor
Scheduling in a Polyprocessor Environment," IEEE
TOC C-33, No.7, July 1984

[14] D.G.Kafuraand V.Y.Shen,"Task Scheduling On a
Multiprocessor System with Independent Memo—
ries,"SIAM J. of Comput., Vol. 6 No.l, 1977

[15] Domenico Ferrari," Computer Systems Performance
Evaluation," Prentice-Hall, 1978

[16] Information System Laboratory,” Development of
Large Scale Programmable Controller,"” Final Report

[17] Bengt Stavenow and Jan Karlsson,"SDL applied to
Discrete Event Simulation,” SDL Newsletter, No.3,
June., 1982

18] Bengt Stavenow and Jan Karlsson, " SDL/SIM: A
Simulation System for Discrete Event Simulation,"
Lund Institute of Technology, Lund, Sweden

[19] TI Inc., Texas Instruments Industrial Control
Products, Model 560/565 Product Profile, Texas
Instrument.

[20] GOULD Inc., 584. Microcode Machine Spec.,
Gould, Jan. 1980

[21] Jong—il Kim, Wook Hyun Kwon, and Jachyun Park,
"Architecture of a Logic Solving Processor For
Programmable Controllers,” Proc. of the 27th SICE,
Aug. 2-4, 1988

413



