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Optinal Discrete Systens using Tine-¥eighted Performance
Index with Prescribed Closed-Loop Eigenvalues

An optimization problem minimizing a given
time-weighted performance index for discrete-time
linear multi-input systems is investigated for the
prespecified closed-lqop eigenvalues. Necessary
conditions for an optimality of the controller
that sa.tisfies the specified closed-loop eigen~
values are derived. A computational algorithm
solving the optimal constant feedback gain is
presented and a numerical example is given to show

the effect of a time~weighted performance index on

the transient responses.

I. Introduction

It is well known that the constant feedback
gains giving desired closed-loop eigenvalues in
the multi-input system are not unique. So an
interesting problem is how to utilize this design
freedom. This freedom can be used to minimize a
time-weighted performance index, combining the
eigenvalue assignment and optimization technique.
Sucha time-weighted performance index is designed
to provide an increasing heavy penality for a
sustained error and hag more good performance
characteristics specified in the time domain such
settling time,

as overshoot, than conventional

quadm(:ic performance index [1-3]. Thus far, the

design method of  optimal regulator for the
prespecified closed-loop eigenvalues has  been
confined to the study of continuocus systems [3-6].

A simple design method of an optimal controller
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minimizing a given time-weighted performance index
for discrete-time linear multi-input systems is
presented in this paper when the closed-loop
eigenvalues are prespecified. The necessary
conditions for the solution are derived by using
Lyapunov function and Lagrange multiplier. An
algorithm computing the optimal controller is
presented and a numerical example is given to show

the effect of a time-weighted performance index on

the transient responses.

II. Problem Formulation
Consider the linear discrete-time time-invariant

system -
x(k+1) = Ax(k) + Bulk) , x(0) = %5, (1)

where the n-dimensional vector x represents the
state, the m-dimensional vector u is the control.
The matrices A and B are constant matrices of
appropriate dimensions. 1t is assumed that the
above system is coml;letely controllable and the
matrix B is full rank. Let the time-weighted
performance index be given as

]

J = & M 0, x(k) + u(k)'Rutkl], 2

k=o
where Q,and R are symmetric positive semidefinite
and positive definite matrices, respectively, and
N is a non-negative integer. The state feedback
gain minimizing the performance index (2) for the
specified closed-loop eigenvalues depends on the

initial state x,. To avoid this dependency, the
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expected value of (2) with respect to the initial Lol
_ V. = col [Ny ,S; N“ ,...,Sl.‘ Nj; 1
state is chosen as follows : i=l,s
R
W = ‘col [Ny 28 Ny e ea By SN D
3 = E(D) . (3) i=l,s
_ o [Pa Patc Py
The design problem is to find the constant P = dieg Tl
. i=l,s S Pl -
state feedback control 0 TR

utk) = Fx(k) (4)

which assigns any prespecified closed-loop
eigenvalues and at the same time minimizes a
time-weighted quadratic per;formance index (3).
The closed-loop eigenvalues are any given
symmetric setf={2,,...,%:s¢n} such that :%d-, =n, &
being the multiplicm} degree associated with ;.
In the following, “the notation A’ will denote
transpose of the matrix A, tr{A] its trace,
clli'eE(A;) diagopal matrix with diagonal entries Ay,

AgrevoyAy and ic'cﬂ:(A; )=[AI BAgr e ALl

IIY1. Eigenvalue Assignment .

All the class of controllers satisfying pole
constraint can be characterized through a set of
perameter “ju‘i;]""s 1=l .. .,d; sk=1,...,m) as
follows [7-9].

1) Compute the maximal rank matrices
Ny Sy .
N = y 5= , i=l,..,s) (5)
N Sa
satisfying

(XTI -A, BIN; =0, [AI -A, BJS, =1 .

2) Define a parameter vector p‘j“:]' AR 35 L
'di) as
pi:) =[Pij,'--upynl' (6)
and form the following matrices
VvV =V,P, W =W,P, (7)

where

3) For each value of the parameter vector pij

compute the following feedback matrix

F(P) = - w™', (8)

Thus, the design freedom remaining after
eigenvalue assignment is represented as any
parameter p,_"~ selected such that the matrix V is
1
bl

nonsingular.

IV. Selection of the optimal eigenvectors

The evaluation of a general time-weighted cost
function for discrete-time time-invarient systems
is given in the following lemma.

Lemma 1 [10] TFor an asymptotically stable

system
x(k+]) = Ax(k) , x{0)=x, (9)
the cost functional

09
J = 2 Wx'(kQ x(k), (10)
k=o

where N is a non-negative integer and Q is

symmetric, is calculated by
J = x,’QN.\ ’ (11)
where Q. is given by the following equations;
A'QA -9 +Q=0 ,
A'Q A-Qt .Z:l'_.."cr A'QuuyA =0, (i=1,..,N).
r=

(12)

The following lemma is useful in computating
the gradient matrix and it is derived easily by

using Lagrangian approach.
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Lemma 2 {11] : If the function of a matrix X is
given by
£(X) = tr[AX(BX)'}, (13)

then the gradient matrix is found to be

J'FW = [1 - B (X'B' 7% 1A% (x'B' ) (14)

where a matrix I is the identity matrix.

Substituting (4) into (1) yields

x(k+1)

(A+rBF)x (k).
A x(k) . (15)

npd

Applying the Lemma 1 to (3), we obtain

Jp = Elxg(Qy,, + G)%, ]
= trl(Qyy + GIX, 1, (186)
where QIH and G are the solution of the following

equations;

A'Q A, - Q +Q,
AlQiAr - Quy + i u.|wCyA¢Qm-rA¢ 0

1i=1,2,...,N)
A‘GA‘-G«}FRF-O (17

and X, =E[x, x;}]. To determine the optimal

parameter P, which minimize the performance index
J

(3) subject to the constraints in (17), the

Hamiltonian for. this problem is expressed as

HIQ{ 1L 1By Ly Py )=ErT(QutPIX, JHEE (L] (ALR A0, 4, )

N i
+.Z L (AQy A + Z N+t G Qi)
i=1 r=l
+ L'(AGA, - G + F'RF)] , (18)

where L;,i=1,2,...,N+l, and L are the syvmmetric

Lagrange multiplier matrices. Then, the necessary

conditions are

9H/>Q)= (j=1,2,...,N+1) (19-a)
dH/HG = (19-b)
JH/9L, = (i=1,2,...,N+1) (20-a)

oH/IL = (20-b)

-9H/>pfjk= 0 (i=l,..,s;j=1,..,d;;k=1,..,m). (21)
Here, we can obtain the following equation

tr{ Z’. Z.(.u-rCA Qlﬂ-iAc rﬂl

i=1 r=1
N N-j
= tel 2 ZJN,,O-C,A;QJA‘L,;"_,,J. (22)
Jj=1 r=o
Substituting (22) into (17), the(22-a) leads to
the following equations;
N-j
A, L Al - L + Z“'JC',A LywpAe = O
r=o (j=1,..,N)
A LyAL =~ Ly + X5 = 0 . (23)

(22-b) implies that L=L,,and (20) yields (17).
Finally (21) can be simply determined through the
matrix form of /P which is derived using the

Lemma 2.

Necessary conditions

In order that the parameter qjkbe optimal with
respect to the performance index (3), it is

necessary that
;H/Dp!’.k = 0, (i:l,..,s;j:l,..,d" k=1,..,m).

Here .9H/¢)p‘jk can be given from the following equa-
tion;
N+1
IH/OP= 2(W,-FV,) ' [B'PALyy + B'(ZQ;A¢L;)

+ B'( Z Z peier Cr QoA Ligy ) HRFL g} (V' v
izl r=1
where Q;and L; together with Ajand F satisty the
following equations;
AéQ'A‘ - Q' + Q,=0
ALQiuAcQivt ZN--H‘OA«- m-rAc‘o
(i=1,2,..,N}
AlGA, - G + F'RF=0
N_

LyAL = b+ BueiCehely |A
Actyhe = 1y* S ,)12,..N)
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ALyAl = Ly + %,20.
Then, the final cost becomes
3, =t (Qu +PI%, 1.

V.” A Numerical Example

Consider a two-input system whose dynamics is

given by

A,ll.los 0 ]

0.057 1.162},

a[0-053 0.105
0.055 0.057).

The weighting matrices are chosen as Qg =R=1 and
also X, is identity matrix. The eigenvalues of the

closed-loop system are specified as )4:0.9,AEO.8.

Then,
[0.2585 0.5122] _4.8781 o 1
N=|01587 0.1081| o | 1.0613 -3.8168
' 1 0 e 0 0
0 1 i, 0 0o |
and
[0.1738  0.34437] -3.,2787 o
N,=|0-1246 0.1033 | g 0.5163 -2.7624
2 1 0 > 0 0
L O T, 0 o J.

The algotithm converges to the following solution;

1.20 -6.61)

F = for N=0
-0.94 -2.96 |
1.88 -8.847

= for N=1
-2.35 1.17
1.54 -11.2]

= for N=2.
-3.01  5.01}

The transient responses of the closed-loop system
are shown in Fig.l. It is evident that the
responses based on the time-weighted pertormance
index do decay faster and exhibit smaller

overshoots than those based on the conventional

quadratic performance index.

VI. Conclusioning Remarks

The design freedom, which remains after the
prespecified closed-loop eigenvalues for discrete-
time linear multi-input systems being assigned,

has been used  to minimize a given time-weighted

quadratic performance index. Necessary conditions
for an optimality of the controller have been
derived. It has been shown that the design method
using the time-weighted performance index
presented in this paper provides an additional
freedom of analytical design approach for better

transient responses.

65 10 15 30 25 30 35 40 45 350

(a)

(1) : ¥=0
(11) : ¥=1

(141) : N=2

Fig. | Response of system with x(0) = (1, 1]’
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Appendix
A computational algorithm

To obtain the optimal solution, one can use the
following iterative algorithm.

(1) For each eigenvalue 3;; calculate N and S, .

(2) Select any initial parameter vector pb such
that the matrix V is nonsingular.

(3) Determine éH/&py from the gradientJH/9P.

(4) If aﬂ/épﬁ satisfies convergence criteria,
jteration is completed. Otherewise find a new
value of parameter p§ using any gradient-based
method.

{5) Return to the step 3.
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