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ABSTRACT

This paper describes the development of the
KORNET that may be regarded as the latest public
packet-switched computer communication network. The
KORNET project included the development of the net-~
work management center (NMC), a network node pro-
cessor (NNP) and a network concentrator. For the
KORNET we use the virtual circuit (VC) method, a dis-—
tributed adaptive routing algorithm, and a dynamic
buffer management algorithm. The NMC acts as anerve
center of the network, performing such functions as
network monitoring, subscriber and network manage-
ment and routing management, etc. As for the NNP
and NC hardwares, we have igplemented them with the
16-bit multitask/multiprocessor technology using
MC68000 microprocessors. Softwares have been devel~
oped using C language except for some parts where
assembly language is required for real time pro-
cessing. All the network protocols we have develop-
ed comply completely with the latest CCITT recom-
mendations including X.25, X.3, X.28 and X.29.

I. INTRODUCTION

Since the ARPANET came into being in 1969, sev-
eral public packet-switched communication networks,
such as Telenet, Tymnet, Transpac and Datapac, have
been developed in the past 15 years. As the data
communication users increase rapidly, the role of
these networks is becoming as important as the cir-
cuit-switched voice networks.

The purpose of this paper is to present the
KORNET that may be regarded as the latest public
packet-switched communication network. This net-
work has been developed during the last four years
(1981-1985). The KORNET presently serves data sig-
nal only, but is expected to accommodate voice as
well as data in the near future. The network has
been implemented using the virtual circuit approach
[1], and follows completely all the latest protocols
recommended by the CCITT including X.25, X.3, X.28
and X.29 [2]. The KORNET project involved the de-
velopment of all the network elements, that is, the
network management center (NMC), a network node pro-
cessor (NNP) and a network concentrator (NC).
These elements have been developed using the latest
technologies and protocols. The NNP and NC hard-
wares have been implemented using MC68000 micropro-
cessors, and all softwares have been written in C
language except for some parts which require assem-
bly language for real time processing. In this

paper we present details of the development of the
NMC and NNP.

Following this introduction, in Section II we
first describe the resource management method wused
in the KORNET. In Section III we discuss the devel~
opment of the NMC which monitors and controls the
network. In Section IV we consider the development
of the NNP hardware which does packet switching, and
in Section V the implementation of the NNP softwares
including X.25 and packet assembly/disassembly (PAD)
protocols. Finally, we make conclusions in Section
V1.

II. RESOURCE MANAGEMENT IN THE KORNET

For the resource management that is critical
for satfefactory performance of a computer communi-
cation network, one must consider the following
three items: NNP buffer management, network flow
control and routing. These are now described.

(1) Buffer Management

Buffer management which has a close relation-
ship with flow control is important for the preven-
tion of deadlock and for the fair allocation and
efficient usage of a buffer among various channels.
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Fig. 1 Buffer management in the KORNET.
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A simplified diagram of buffer management in the of deadlock and congestion, and for a fair utiliza-

KORNET is shown in Fig. 1. The common buffer which tion of communication channels. In general, a rout-
is centrally managed stores packets from the net~ ing algorithm must be designed considering accuracy,
work or from a module within the NNP, and the input fairness, simplicity, stability, optimality and ro-

queue of each processor stores only the information bustness, One can think of two routing methods;

regarding the buffer point and the data size. The fixed routing and adaptive routing [6]. In the

functions of the central buffer manager are to al-~ KORNET, a distributed adaptive routing method that

locate and release a block of buffer according to is similar to the scheme used in the ARPANET i{s used

the request of each processor, and to check the in the transport level since the packet service is

status of the common buffer pool. In the KORNET based on the virtual circuit method,

the buffer is shared dynamically, thereby improving

the efficiency of buffer usage. Buffer blocks are III. NETWORK MANAGEMENT CENTER

allocated by the method of sharing maximum queues

(SMXQ) [3]. Let N be the number of established chan-
nels and B be the total number of blocks of the com-—
mon buffer. When the SMXQ method is used, the fol-

lowing inequality holds between the maximum number

of allocated buffers per channel and the number of

buffers, B/N, allocated according to the complete

partition method:

The NMC hardware has been implemented using the
32 bit MV/8000 superminicomputer of Data General
(DG), Inc. NMC Softwares, such as operator inter-—
face, primary/secondary (P/S), session layer, packet
layer and link laver, have been developed in C lan-
guage except for some part of link layer which re-
quires assembly language for real time processing.
For implementation of the physical layer, an intel-~
B ligent synchronous controller (ISC) board supplied
by Data General has been used. Since packet and
link layer protocols of the NMC are the same as

, 1 . al d t .
Hence, the number of buffer blocks n, allocate ° those of the NNP, only higher layer softwares above

the i_, channel is constrained by the following in-

equal%%ies: the session layer will be explained in this section.
0<a <b (1) Operator Interface
— i~ "max
and W The operator uses the network command language
S n. < B. (NCL) based on CCITT Z.311-Z.341 recommendations to
i=l i check the network status and to manage the network
elements [7]. Three-stage jobs, i.e., command ac-
(2) Flow Control quisition, command execution and response display,
It is well known that when the amount of data are done in the operator interface part. Tabie I
shows the main commands used in the KORNET. The

craffic is larger than the system can handle, con~
gestion occurs. In this case the network efficiency
would become degraded abruptly with wunacceptable
packet delay. Therefore, some form of flow control Table I. Major NCL's used in KORNET
is normally done to avoid such phenomena [4].

In the KORNET, flow control is done in the hop

response to a command is transferred to the operator
terminal from the network.

and network access levels, and may be divided into Gommand NCL command Content
the following three catagories: Window flow control ) .

: ) AN Session SE~BGN Session open
in the link and packet layers, flow control limit~ . e .

) ) SE-MOD Session modification
ing the output channel queue, and flow control by

Lo . . SE-PVC PVC session open
limiting the input buffer of the PAD. Among various SE-MSG Me xch betw
window control schemes, we have chosen for the link ’ 2§a%eresesaqge etween
and packet layers the sliding window flow control operato stons

SE-END Session end

scheme based on the piggybacked ACK methed which is
known to be‘most eﬁflclent in ;hannel utilization Subscriber SA-PVC PVC creation
[5). The window sizes of the link and packet layers

: A . management SD-PVC PVC deletion
are 7 and 2, respectively, which conform to the SM-PVC PVC modificati
CCITT recommendation. Also, in the case that no 3 * ion
more information or data packets can be processed

or no additional new buffer is allocated, interrup- izgtlzi N ﬁg:agg goui}ng tagie coi}igt}on
tion of transmission is requested by sending a re- agemen ' outing table modilication
ceive not ready (RNR) frame or RNR packet to the Network SO-LNK Link status monitoring
transmitter. . . ;

In the PAD, characters from the start/stop monitoring gg:gxi zVC.staguf ?onltﬁrlng ber
(s/s) data terminal equipment (DTE) are stored in xgn;&g{lnb Ordt € aumbe
order in the input line buffer (ILB). If the number SQ-LCH Eégicalscﬁgsgzl status

of blocks stored in the ILB exceeds some limit, the
PAD transmits the X-OFF signal (DC3) to the s/s DTE
so that character transmission is temporarily halted. Network TC-CLK Link connection
When the ILB is available again, it transmits the management | TC-DLK Logical link dis ‘s

¥-ON (DCl}, thereby allowing character transmission. 8 ogiea * isconnection

monitoring

(3) Routing Other HELP Usage of command
Routing plays an important role t ther with services COMMAND Record file examination
§ play P oge NCL NCL explanation

flow control and buffer management for prevention

—
Ny
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(2) Primary/Secondary (P/S) Function

When commands and parameters are sent to the
P/S queue from the execution controller of the op-
erator interface part, classification for commands
is made. Then, a process, such as subscriber man~-
agement, network management, network monitoring or
routing management, is executed, and it is monitored
by the communication process monitor. Depending on
the command, it is decided to open the session, have
the data transfer state, or only access to a table.
These commands and parameters are sent to the ses-
sion layer. Fig. 2 shows the structure of the P/S
function. If the response to a command is received,
the command and the sequence number are stored in
the memory of P/S function, and parameters and the
response are recorded in the file system. Typical

responses are execution error, time out, and normal
response.
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Fig. 2 Scftware structure of primary/secondary

function.

The messages generated periodically or aperi-
odically in the NMC are sent to the P/S function of
an NNP as shown in Fig. 3. When each parameter of
message is determined in the P/S of the NMC, the
session to communicate with an NNP is open. The
information for opening a session is transferred us-
ing the internal message. The P/S function of the
NNP classifies the received messages from the NMC,
and executes a proper action. Then, a logical chan-
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Fig. 3 Protocol structure between NMC and NNP.
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nel and a routing information from the network node
process manager (NNPM) as well as initialized para-
meters are utilized. Thereafter, the corresponding
responses to the command are sent to the P/S func-
tion of the NMC.

(3

Session Layer

The session layer has been implemented based on
the session layer protocol proposed by Bell Labora-—
tories as shown in Fig. 4. Four external queues
and parameter tables are used to exchange informa-
tion among layers. When the information is sent to
another layer, the related parameters are transfer~
red using an interface table. The data to be sent

to the NNP is read into the data buffer of higher
layer, and sent to the internal queue (Q-SD). The
data in the Q-SD is transferred through the trans-
port service to the NNP after a session header is

attached. On the other hand, the received data from
the NNP is read into the queue Q-SU from the packet
level buffer. If all data messages arrive, the re-
ceived data messages are transferred to the higher
layer,
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Fig. 4 Software structure of sessiocn layer.
(=== data flow, — information flow,

-—- poliling sequence)

SPOLL executes polling of input queues. If
SPOLL detects the events, it informs SMAIN so as to
execute a proper action. The creation and deletion
of a new logical channel, status change and various
parameters are recorded in the T _STIMER table. Also,
if time-out occurs, STIMER informs SMAIN of time—out
through Q_STIM and SPOLL.

(4) Integration and Test of NMC

To test the NMC, we have followed the following
four steps; module test, module 1integration test,
local loopback test, and total integration test after
connecting the NMC with NNP's Each task coded in
PL/I language or assembly language has been debugged
using various facilities of the MV/8000 computer,
and tested by monitoring various queues and tables.
Also, module integration and local loopback test
have been confirmed by examining the output pattern
for various input sequences and by monitoring the
contents of queues and tables. At the stage of
emulation test, various protocol testers, such as
TEK834 and CHAMELEON II, have been used. In this
case, the protocol tester and the MV/8000 computer
were operated in the DCE and DTE modes, respectively.



The functional operations of the NMC, such as ses-
sion opening, call setup, data transfer and call
clear, were checked according to a test scenario.

Also, the functional check for the NNP
done using the same test scenario.
After the total integrationof the NMC and NNP's,
we have tested whether the NMC properly sends com-
mands to the network elements such as the NNP, and
receives correctly corresponding responses from the

system was

network. Moreover, we have tested network applica-
tion utilities such as the virtual terminal agent
and the file transfer agent through the KORNET, and
confirmed their operation to be normal.
IV. IMPLEMENTATION OF THE NNP HARDWARE
The NNP hardware has been implemented as a
multiprocessor/multitask system for real time pro-

cessing of data signals using MC68000 16-bit micro-
processors and peripheral devices. It has the VME
bus structure, and consists of a master control pro-
cessing module (MCPM), common memory modules (CMM's),
and line processing modules (LPM’'s). In the design
of the NNP, a particular emphasis was placed on the
modularity for easy expansion of the system capaci-

ty. The structure of the NNP hardware is shown in
Fig. 5.
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Fig. 5 Hardware structure of NNP.
(1) MCPM

The MCPM governs data exchange between the MCPM
and LPM's for multiprocessing through the use of
the CMM. It has a bus arbiter and controls the sys~
tem bus in the form of a daisy chain. A block dia-
gram of the MCPM and LPM is shown in Fig. 6. As
seen in the figure, the MCPM consists of an MC68000
CPU, a programmable timer, a serial I/0, a physical
interface, an interrupt handler, a local memory of
128 kbytes, etc.

(2) LPM

. The LPM is divided into LPM-A
former is used for connection with
terminal equipments (PDTE's) and X.25 links, and the
later for connection with s/s DTE's It has many
serial I/0 ports using the memory map method. As
seen in Fig. 6, the structure of the LPM-A is almost
the same as the MCPM except that it has a direct
memory access controller (DMAC), but has no bus ar-
biter.

(3) oM

and LPM~B. The
packet-mode data

The CMM is used as a common memory for data ex—
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Block diagram of MCPM and LPM.

Note: 1. The DMAC is included only in the
LPM-3A module.

The bus arbiter is included only
in the MCPM module.

MCPM and LPM's. The size of the
and may be expanded. It has the
capability of even parity checking, thereby enabl-
ing to detect data errors resulting from bus fail-
ures. The features of the NNP hardware developed
for the KORNET are summarized in Table II.

Table IT.

1. CPy

i
i

IMYSICAL INTERFACE

REGASTERS

Fig. 6
”

change between the
CMM is 256 kbhytes,

Hardware characteristics of NNP system.

I MC68000

2

Module strucrure
MCPM Control of LPM-a, LPM-B aad OM

. LPM-a Svnchronous serial I/0
! . LPM-B Asynchronous serial I/0
; Lo Common memory for information

excnange among modules

. Memorv size
- Total address size
. Local memory size
. Monitar ROM
. Common memory size

16 Mbyres
128 Kbyces
16 Kbvres {Debugging program)
256 Khvres

4. Total moaule 20 modules
. MCPM 2 modules
. LPM 16 moduies
.M 2 modules

. Operating svstem
. Muititasking For eacn moaule., multitask real time
cperating svstem is 1nciuded
( . Mulriprocessing Intormation is exchangea using QM

. 170 nsorc/i LPM

. Syncnronous 56 Kbps x 2 ports
Low speed x L4 porcs
. Asvncnronous Max. spees 19.2 Kbps x 16 pores

7. System bus YME bus interface

V. [MPLEMENTATION OF NNP SOFTWARES

NNP softwares have been developed using C lan-
guage except for some parts where MC68000 assembly
language is vequired for real time processing.
These softwares have been developed systematicallv
using the specification and description language
(SDL) and  the program design language (PDL).
The overall software structure of the NNP is shown



in Fig. 7. The software of each module is now de-~

scribed.
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Fig. 7 Overall software structure of NNP.
(1) MCPM Software

The structure of the MCPM software is shown in
Fig. 8. It may be divided largely into four rou-
tines. First, the virtual circuit management (VCM)
routine has the switching and supervisory functions.
It also gives necessary commands to LPM-A and LPM-B.
When a user requests a communication channel, the
VCM opens a channel based on the routing path infor-
mation from the routing management. Second, the
routing management routine detects congestion and
failures of each path, and provides the routing path
information to the VCM. It uses an adaptive distri-
bution algorithm, It monitors channel states, and
informs the neighboring NNP of it to help select a
routing path. Third, the higher layer protocols in-
cluding application softwares carry out and respond
to various commands received from the NMC. These
protocols correspond to the transport, session and
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Fig. 8

there is the interstation communication protocol
(ISCP) which is composed of the intermodule communi-
cation protocol (IMCP) and the interfunction com-
munication protocol (IFCP). The ISCP is used for
data exchange among various modules and functions.

(2) LPM-A Software

The software structure of the LPM~A which ser-

vices the X.25 protocol is shown in Fig. 9. It con-
sists of PKT-MAIN for the packet layer protocol,
ANAL-RCV and FRM-MAIN for the link layer protocol,

and the high-level data link control (HDLC) receiver
and transmitter modules to interface with the physi-
cal layer. In addition, it has the ISCP for commu-
nication with other hardware boards through the sys-
tem bus.

SYSTEM 8US

P =
pRM __ﬁ____\a‘@__‘ as

&
STATE

Fig. 9 Software structure of X.25 protocol.
The packet layer provides the packetization
services., It decides the packet format, multiplexes

error control
Also, it provides
a closed user

logical channels, and does flow and
using the packet sequence number.
optional user facilities, such as
group and a fast select function.

The basic functions of the link layer include
synchronization utilizing the flag sequence, ad-
dressing that discriminates a DTE from a DCE, error
control using the frame check sequence (FCS) of 2
bytes, and flow control using the control field of
1 byte. There are two methods of accessing to the
link layer; the link access protocol (LAP) method
based on the asynchronous response mode (ARM) and
the balanced mode link access protocol (LAPB) based
on the asynchronous balanced mode. In the KORNET
the link layer protocol has been designed based on
the LAPB method.

In addition, the physical layer follows the
EIA RS-232C which satisfies the CCITT recommendatior
X.21 bis.

(3) LPM-B Software

The software structure of the LPM-B is
in Fig. 10. It may be divided into the following
four routines: The PAD routine that follows the
CCITT recommendations X.3, X.28, and X.29, the pack

shown
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et DTE/DCE routine for interface with the packet
layer within the node, the ISCP, and the physical
layer interface. The PAD routine has 18 parameters
for comnection with the s/s DTE. Its basic func-
tions include assembling packets using characters
received from an s/s DTE, disassembling pacikets from
the network into characters, and setting up and dis-
connecting channels. The packet DTE/DCE routine
which may be regarded as the counterpart of the
LPM-A packet layer has been implemented in a simpler
form than the LPM-A packet layer.

Fig. 10

(4) Interrelationship of NNP Softwares

An NNP is connected to another NNP or PDTE
through LPM-A, and to s/s DTE's through LPM-B. The
PDTE has physical, link, packet and higher layer pro-
tocols including the virtual terminal agent and the
file transfer agent. These are counterparts to
those stored in the NNP. .

The interrelationship of the NNP softwares may
be explained using an example of communication be-

tween two PDTE's that are connected to their respec-
tive NNP's. When a user attached to a PDTE requests
a channel, the PDTE is assigned a new logical chan-
nel, and transmits a call request packet to a neigh-
boring NNP. This call request packet is transferred
to the VCM of the MCPM through the LPM-A by the
ISCP. At the VCM, another logical channel 1is as-
signed for transmission to another NNP. When the
call request packet is received by a remote PDTE,
it transmits a call confirmation packet on the re-
verse route, thereby setting up a communication
channel. Communication between the two PDTE's is
done through this channel withour passing through
the VCM of the NNP. To disconnect the channel, a
clear request packet is sent to the VCM of an NNP,
and the corresponding logical channel is cancelled.
Then, a clear confirmation packet is transferred to
the PDTE or NNP which sends a clear request packet.

An s/s DTE is connected to the LPM-B of the NNP.
The PAD parameter values must be selected properly
according to the DTE being connected. When a call
is requested through an s/s DTE, a call request
packet is sent to the VCM through a logical channel.
The procedures of setting-up, disconnection and data
transmission are the same as for the case of the.
PDTE.

VI. CONCLUSION

We have presented the development of a public
packet-switched computer network named the KORNET.
In its development we have used the latest software
and hardware technologies, and the latest protocols
recommended by the CCITT. In this regard, the
KORNET may be regarded as the most up-to-date public
data network at the present time. Also, in the de-
sign of network softwares and hardwares, a particu-
lar emphasis was placed on flexibility, expandabili-
ty and modularity so that they may be expanded or
modified easily.
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