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Real-Time State Estimation to a Power System

Myong-Chul Shin

1. Introduction

On-line real time state estimetion is
becoming a basic function in modern power
aystem control software and more and more
power systam control centers have reel time
state estimetion in service. Up to the
present, various methods have been praposed
for the state estimation in electric power
systems. An extensive list of refsrences can
be found in the survey paper.(1) Basically,
all these papers are based on Weighted Least
Squares(WLS) method. When the noise in the
measured data possesses certain statistical
properties, theresulting estimations are
known as unbiased and minimal variance .

Due to non-linear measuremenes, in the
WLS approach, en iterative process based on
succesive linearization is implied so that
good estimetes can be obtained. However, it
has been shown that by sequential processing
of one measurement at a time, estimates of
the same accuracy as in the iterative process
can be obtained.(2,3) The performance of a
WLS estimator may be severely degraded due
to the presence of bad data, which may be due
to structural error or meter communication
failures. The problem of bad data has been
considered by using either different perfor-
mance criterion or certain identification
logic basedson hypothesis testing procedures.
(3-8) The implementation of these methods
leads extra computation and storage.

The aim of this paper is to introduce
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a real time state estimation algorithm that
avoids the difficulties inherent in static
state estimétion and also avoids any serious
attempt to model the time behavior of the
system state. In this case of this new
estimator algorithm, the Kalman filtering
techniques which is known as tracking state
estimetor and a sparse program techniques are
applied.(9) The bad data obtained while
measuring the variables of the electric power
systems must be rejected before the state
estimation is attempted. Ffor the‘purposa of
detection of bad data, a simple test on the
residual error is proposed and once the bad
data is detected the method developed estimates
the size of bad data and implements a correc-
tion depending on this size.

The theoretical results are supplemented
by digital computer simulation studies with

on-line real-time mode,

2, Stats Estimetion of Power System
Let the large scale electrical power
system containing N buses and L lines is under
normal condition, The state vector X to be
obtain is written as follows,
x:[e & (1
where Xt n dimensional vector of the true
state.(n=2N-1)
et N dimensional voltage magnitude
vector.
{: N-1 dimensional voltage phase

angle vector.
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The non«linear equations relating the measure
ments and the stete vectors are
00+ ¥ (2)
where I: measurement vector.
h(X) 1non-linsar function.
Vt error vector.
m: number of measurements.
The optimum state estimate itself is given
by
Ky X RGO GO (-0 @
Ht Jacobian matrix
Wi Covariance of error random
vector
e HwH
We can get 2 solution by using eq(3), start

A A A
with same X5, Untill£k;1'—klé&

2.1 Application of the Kalman Filter

We shall focus our attention on dynamic
state estimation theory which is prove to be
a better approach to the problem than one
already discussed. In obtaining an on-line
state estimation algorithm, it is considered
the following simple minded model for the

time behavior of the system.

Xk ) EX(k=1) (8)
Z=h(X)+Y
=ﬁ(50)+%;|x0(x-xm}+1 {s)

Here, let X-X->AX, ;-h(gﬁ)*g
AZ(k)=H(K)AR(K)+V(k}  k=1,2,... (86)
We can get the following Kalman Filtering

recursive equations.

Rt K(k=) ok, [206) n (x=1)] (D)
B(k) =[ 1K, H ] P(k-1) (8)

k(0 =p(-DH 2o 20-DETT ()
Whare X(k):state sstimate vector after
processing k of measurements
P(k) 1covariance matrix
Z(k) tk-th measurement in Z
h{k) tnonlinear measursment sguation
for the k-th messurement
H(k) 1linearized measurement equation
qgtvatiance of noise on the k-th
measurement in Z

K, :gain vector for the k-th measurement
An initial estimate X(D) and corresponding
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covariance matrix P(0) are needed to start the

compufatien in "the above scheme.

2.2 An Improved Model of Kalmsn Filter Equation
From here on, the main objsctive is to

express the results of Kalmen fFilter esquation

in an improved form that will allow us to

teke advantage of the sparsity involved.

Consider the discrete time linear system.

20 = Bk, k-1)X(k-1)+ Tlk,k=1)W(k=1)  (10)

Z{k) =H) X (k) +¥(k) k=1,2... (11)
Here, dencte by zﬂk‘k) the optimal filtered
estimate with its corresponding covariance
matrix Piklk},

Bef) £ LR OK| ) =x(k)) (R0 x(6)
Also define B(kik=1) as

Bl k=1) =€ { (& 1e=1) =x00) ) (R(k| k=1) -x(k)) §

where X(k|k=1)=E{x(10] Z(k), ..., 2(k=1)}

Then the conventional Kalman Filter equations

(12)

are as follows
kiKY = F(k k1) K=} e=1) 4

\_(__(k)[_Z_(k)-ﬂ(k)g(k,kd)g(k-ﬂk-ﬂ] (13)

() =2che=1) 1 () [ 10D B(K k=1 HE () s} ]
Blklk-1) = Bk, k=1)P(k=1| k1) ES(kc,k1)4
Tk ok=1)8 (k=1 (1, k=1)

Plefte) =[ LK) H(K)] Pk k=1)
By means of various vector-matrix manipulation,
equattians can he put into a number of equivale
ent forms. One such equivalent representation
involvas an altsrnateexpression for tha filter
gain matrix K(k). The final results are as
follows

K (k) =2kl k) HE G0 R™ (K)

2w {2 ek =1) +H (0 BT 00 k)]
Now let ¥=1, Q=0 and define F(k), the Fisher

information matrix by [(k):_e_1(l<|k)

(14)

Furthermore,it is considersed the case where

the measurements are processed sequentially.

3. Bad Data Processing

The WLS estimates dus to the bad data are
inaccurate and hence need correction.
The problem has been considered by several
authors. H.Muller has proposed modified per-
Formance criteria such as quatratic squers

root and quaedratic constant in combinetion
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with the normal quadratic criterion.(10)
Instead of modifying the performance criterion

function, some authors propose a J(£)-test in

combination with ri-test(weighted residual test)

and rn-tast(normalized residual test)., This
methods for their implementation requir the
sveluation of residues, and sensitivity matri-
ces leading to additionel computations.{11,12)
Further, some of these methods cannot be app-
lied to deal directly with multiple bad data
points. To desl with this contingency, an
estimation of the gross error which is cealled
B-test isproposed recently for bad data proc-
ess.(13)

From here, we develop a3 method to detect,
estimate and correct the bad data which is
done without extre computations available the
residual by using the orthogonal transformation

matrix when a new measuremant is processed.

3«1 Datsction of Bad Data

Under the assumption that the measurement
error is a normally distributed ome with stan-
dard deviation €, and no bad data is present,

it is reasonable to assume that the measuyre-

ment residueal is less than aor equal to 37.(15)&

z -a_ X 43¢ (15)
m+l,t me
If the increese in J from m-th to (m+1)-th
messurement is AJ, then
< -a %72
AJ'3s16m+1/Zm¢1 am41x) (16)
Hence; for the purpose of detection, threshold
l1imits cen be imposed on sither 4J or 8
and the presence of bad data cen be detected,
3,2 Estimation of Bad Data
Let e is true residual correspond
ms1,t
to the true measuresment Zm+1,t' ﬁhen
® e 17%me 1, £ 075220 Lt £ 2me 1 X0 #5558 (17
where kis the increase in the residual due
to the bad data of size 8.
~ ~
ﬁ:em’1(lm‘1-aX-3V)/Zm41-aX)
3.3 Correction of Bad Data

(18)

The modifind measurement vector is diff-
erent from the true measurement vector vector.
72348 (19)

To obtain ZE,one has to obtairtsz the correc-

tion vector.

by é‘=s12{3

It may be noted that & is given

The size p of bed data is already known,
Having obtained §’, the correction needed for
obtaining Qt can be solved with % replaced by
2,22-8. It may be noted that in the detection,
estimation and correction schemas proposed,no
extra computations. are needed except division
for the estimation of bad date and a vector-
scalar multiplicetion for the correction.

For grocessing of the next measurement % is

A
replaced by Zt'

4, Experiments
4.1 Computation of 7

The impedance and line charging data for
the test model system(S~bus 7-1line,30-bus: 41~
line,11B-bus 476-ldine AEP) is given in terms
of the line resistance, reactance and charging
capacitance per unit (100MVA). Rj and Xj are
given as data and the line charging capecitan-
ce Cj is normally lumped on the buses at the
line terminals with one-half of the. total
charging of the line at each end.

Y1k =Crese *Brae 4

~ -1
Ve deton (8, /6,)
where Ykk: Self admittance at node k

Ykm=ka+Bka

~ -1
Ykm=-vkﬁitan (Bkm/ckm)
where Ykm=MUtual admittance betwsen nodss
k and m
Now suppose that bus k has an transformer with

If the § matrix is first

nonunity output.
computed assuming no transformers are present,
then the following scheme should be used to
make corrections.
2

Y =Y -

kic, tap™ ki ,notap* (VDY
Y =
mm, tap Ymm,notap

where Y are self ad-

Y
kk,notap or mm,notap
mittances computed assuming no tap pre~

sent in Y,

J
Y =
km, tap Nijm,notap

4,2 Experimental Apparatus
Kettering Energy System Laboratory:

Real-time Power system simulation Facility
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i} Computer Equipment
Substation computer(8)
Arse level computer(1-VAX/750)
Extermal-event computer{(1)
Data-collection computer{2)
Digital-relay computers
i1) Transmission Line Network(TLN)
Capable of representing up to 2000 miles
of transmission line (pi-section) at
various voltage(138, 345, 500, 765 KV).
M 6800-based impedance ralay.
Time varing (stochastic) substation
quantity.
Random load devices.
ifi)Laboratory Peripheral Accelerator
Control of anslog-to-digital and digital
~to-analpg converters, digital 1/0
regsisters, and real-time clocks.
Allows aggregate analog irmput and output
rates up to 150,000 samples per second.
Sampling is initiated either by an over-
flow of the real-time clock or by an
axternally suplied signal.
4.3 Results and Discussion
The error curve of the results of a comp-
uter run based on a set of initial conditions
for the estimator are presented in fig. 1.
Thess results are in good agreement with the
correct values, and except for a few nodes,
the estimated phase angles are to within a
degree of theirrespsctive correctivs values.
The total execution time for the 118-bus

system was approximately 95 seconds,however

=2

this time can be cut down by using thehigher
clock rate for atarting, stopping, or changing
the sample rate at the real-time clock runs

on the LPA subsystem. furthermore, there is st-
ill much room For incressing the efficiency

of the coda.

5 Conclusions

In this study, [ have trisd to point out
some of the major aspects of the real-time
state estimation problem and bad dats process
in powsr systems. An emphasis was bassd on
axaming efficfent state estimator algorithms,
I have presentsd some errors of the numerical
resuylts of this scheme. Some improvement mey
result by making a few minor changes in the
algorithm, It is prospectad that much can be
done in the way of improving security and

economy in power systems.
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