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Optimal Re-Entry from Orbit Using Dynamic Programming

Man Hyung Lee

1. Introduction

This paper demonstrates a dynamic pro—
gramming solution to the optimal re~entry from
orbit problem. The problem takes into account
the control of the accelerations experienced
by the crew and the heating rate of the sur-
face of the spacecraft. By using a weighting
value between these two factors, the re—entry
trajectory can be varied to account for differ-
ences such as varied thermal protection systems
or payload specipic acceleration requirements.

The Mathematical description is present~
ed and the problem is formulated using the
Hamiltonian and the minimum principle. A dynam~-
ic programming solution is then presented that
is similar to the method used by Dreyfuss and
Cartino (1) to solve the aircraft minimum time-
to-climb problem. A description of a computer
program solution is presented with the results
to date.

2. Problem Desecription

In order to successfully return a manned
spacecraft from orbit it is necessary to be
aﬁle to balance the surface heating rate and
the acceleration effects experienced by the
crew. New technologies are available that pro—
vide thermal protection systems that absorb
and dissipate a large amount of heat thus all
owing reduced accelerations upon the crew.
Using an optimal re-entry trajectory allows

one to best take advantage of any mission or
vechicle specific requirements.
The problem is formulated in a fashion

similar to that proposed by Greensite (2],
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The spacecraft is considered to be a point

mags with forces acting on it as shown in fig-

ure 1,
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figure 1. Co—ordinate system for re-entry
problen

The dynamical equations that describe the
motion are as follows:

h = -Vsinr 1)
. D
V = gsinr - - {2)
t = geosr/V - Vcosr/(re + h)
~L/mV¥ (3)
where

h = altitude
V.= velocity
r = flight path angle
g = gravitational acceleration
D = drag force
m = mass of vehicle
r = radius of spherical sarth
L = 1if% force,
In order to simplify the problem somewhat, a
constant flight path angle was assumed.
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The rate of heating is given by
= k0% @)

vhere Khis a heating constant dependent upon

the spacecraft and P is the atmospheric density.

The acceleration sensed by the crew is given
by
¢ =(1? + &) V/2/n? (5)
As human tolerance levels depend on magnitude
of acceleration and length of time applied,
Greensite proposes using thé acceleration squa—
red which approximates a linear function for
the endurance limit in the region of interest.
Equation (4) and (5) can then be used
to form the following performance index:
£ /2.3 2, 2,2
J = g (k,0/° Vv +KW(L + D°)/m“)dt
to : (6)
where K" is the ueightipg factor between the
heating rate and the acceleration forces.

Atmospheric density can be approximated by (3)
P = K,y Exp(Kh) @)

vhere Ksl is a reference density and Ke is
an exponential decay factor. Lift and drag
forces are given by
s %0 (8)
.1
D% — v"’ll(&cd (9
where Ka is the reference area and Cl’ Cd

are the coefficients of 1ift and drag
respectively and are approximated by

C, = K, sindcosa (10)

cl
o K +Keq sind (11)

d = Tedy  edy

where Kcl,’ ch1, ch

are vehicle dependent
2

constants for 1ift and drag and o is the angle
of attack and control variable. /
Using the above equations, the optimal
control problem could be formulated using four
state variables and one control variables:

'1 = h = -Vginr = -x2sinr = f, _ (12)
'2 =V = gsinr-- D/m = (13)
k3=1< 91/2 3—1{ 1/2)% £, (14)
x, = (12 + 0))/n = (15)
J = x3(tf) + xL(tf) (16)

The goal would be to calculate the angle of

attacks o, during the trajectory such that
equation (16) was minimized. Using the minimum
principle, the Hamiltonian could be formed

To minimize J, o{ could be détermined from
dH/dt = 0 ) (18)

along the trajectory. This sets up a two—point
boundary value problem with eight state and
costate equations and eight boundary conditions.
This presents a difficult problem to solve.

3. Dynamic Programming Solution

By reducing the problem to one of two
state variables and one control variable, a
dynamic programming iterative solution can be
obtained. The method used is similar to that
presented originally by (1), in the solution
of the aircraft minimum time to climb problem.
The problem was algo treated by others later
(3). Here the object was to minimize the time
required to achieve a given final altitude and
velocity from a given initial altitude and
velocity. The state space was represented by a
grid with velocity and altitude as the abscissa
and ordinate, respectively. The problem becomes
one of moving from an initial grid point to a
final grid point moving in the direction of
either constant V or constant h. The theory of
dynamic programming shows that an optimal cost
can be computed for each grid point by start—
ing at the terminal point and applying the
minimum cost control to get to each of the
other grid points. The technique uses the’
priciple of optimality which says that the
minimum cost is achived by moving in a direction
that minimizes the sum of the cost of going
to the next state plus the cost of going from
the resulting state to the terminal state.
The concept can be represented by the following
equation:

I(x,t) = Wgp 1(x,89t) £43(xckax, tHat) (19)

u

where 1(x,°,t) 1s the cost per unit time when
applying ék)and J(x,t) is the minimum cost at
state x and time t. Once these cost and control

values have been calculated for each grid point,
the optimal trajectory can be recovered by
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starting at the inital point and traversing
grid such that the cost is minimum for each
step. A subtle advantage of this method is
vhat Bellman calls implicit imbedding where
an optimal trajectory can be determined from
any initial point on the grid. Although the
optimal re-entry problem does not try to
minimize time, the same principles can still
be applied. The state space can be thought
of ag a grid in the h~V plane. With known
terminal conditions as a starting point,
the cost and minimum control values can be
calculated for each point on the grid by
using the recurrence relations in equation
(19).

The problem is reduced to state vari-

ables and one control variable as follows:

£, = k1 =h=-x,sinr (20}
f2=>'c2=v=gsinr-n/m (21)
u =g 400, (22)

For the computer program solution the state
equations wre discretized as follows:
&%y = =x,8in T4t (23)
&x, = (gsin r-D/m)at (24)

with the discretize versions of the cost

i

d

funtions as

4B = K, /2 3t (25)

AG = ( 12 + 2 )-At/m2 (26)
The admissible controls were discretized
to 5 increments

ue {0,5,10,15320,25, 30,3547} .
The st used in the above equations can be
determined using an approach by Larson
{4,5) called state increment dynamic
programming. This method uses fixed size
increments of aV and ah but the time vari-
able varies depending upon the state and
the control applied at that state. The time
interval used is that interval vhich is requ-
ired to move one increment in ax for each
admissable ék{ For each control, ot is cal-
culated as follows:

At(k) = ax; / fi(x,u(k),t) (27
vhere ax, is the fixed increment for state

the fixed increment for state
,t) is the state

variable x »
verisble X, and fi(i;“

equationfor X4 The next state is then comput~
ed for each u and each x such that

x(k)= X tax =x+ f(x,u(k),t)bt(k)
vhere Ax comes from equations (23) and (24) and

ot comes from equation (27) and u(k) is the
control used to obtain ai(k) in equation (27).
Using this method each state lies on a bound~
ary of the fixed increment of the state vari-
ables where a method using a fixed st does not,
The optimal cost and control is then calculated
for each of these next states using the prin-
ciple of optimality and equation (19). This
process is continued until values are determin-
ed for all of the grid points. The grid can
then be traversed by starting at the initial
point and moving in increments of sﬁate 80
that the cost is minimum. The golution to
computer program lends itself well to a struet=
ured computer program. The calculations involv-
ed can be broken down into separate subroutines
or procedures and a main routine can be written
to sequence through the procedures as requir-
eds A PASCAL program was written that sequence
through the dynamical equations for the system
but due to problems encountered,a complete that
wveighed the heating rate and acceleration for-
ces while.optimally varying the angle of attack
was not finished. The biggest problem encount-
ered was finding a value for the constant fligh
path angle that allowed the trajectory to be -
in the right envelope. In actuasl flight, the
flight path angle varies considerably during
re-entry and actually goes negative relative
to the angle shown in figure 1. This occurs
when the spacecraft begins to enter more denge
atmosphere at a high velocity. The effect de~
creases the rate of increase of the cost funte
jons at a time when they would otherwise in-
crease rapidly due to high velocity in a more
dense atmosphere. In order to overcome the
constant flight path angle problem it was ne-
gsary to adjust a number of constants in the
data base. The following were the desired
initial and final corditions:

V(to) = 24000 ft/sec
v(tf) = 15000-£t/sec
h(ty) = 400000 £t
h(tf) = 250000 f%
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These numbers correspond roughly roughly with
the figures used the early portion of the sp-
ace shuttle re-entry(6). The actual numbers
used however correspond to a space craft wei-
ghing about 9600 lbs . with a surface area of
66.5 £t2. The numbers used came from the prob-
lem presented by[7) origiﬁally but were modif-
ied as stated earier. '

The intent was to construct a grid based
on the initial and final states and then pro-
ceed with the algorithm described. Using incre-
ments of aV of 1000ft/sec~and ah of 10000f%.
The grid would be 9x15. These values were cho-
sen in the interest of conserving computer
budget and in actual trajectory design would
be of smaller magnitude. These increments st~
illkcause one to deal with the curse of dim=
ensionality. The admissible control was quant~
ized into 5° increments meaning 8 possible
values to cover the 40" range of the angle of
attack., This means to calculate all the grid
points would require on the order of 9x15x8
or 1080 times through the dynamical equations.
This does compare favorably, however, with
the alternative brute force method which would
require on the order of (%+15)!/(81)(161)
or 700000 times through the equations to eval-
uate all possible routes. The run made used a
constant angle of attack of 0" the first time
through and 40 the the second time through.

It was felt this would show the range of values
that might be encountered during a trajectory
vhere the angle of attack can be veried from
0’ to 407, ‘

4 Conclusion

The optimal re~entry from orbit problem
presenrs some very interesting problems to be
solved. A dynamic programming solution is very
well suited for the problem compared to a two-
point boundary value problem with 8 state and
costate equations using the minimum principle.
The dynami¢ programming solution is alsc more
attractive than a brute force grid-type search

method. Even so, the problem presented here

requires more work and computer time than an
end of the project allows.
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Table 1. Congtants for Trajectory
Program

2.09 x 107 £t

32.2 ft/sec2

300.0 1b-sec?/ft

1.0 x 1074 (lb)1/zsec
k%= 0,052 (10) 2500 /242
K = ~4.26 x 1077 £t
66.5 £t2
= 1.8

ch1=0.274
=1,2

K a2
B(0) = n(t,)

v(0) = V(to)

i

=~ 8 @ H
=
] it

=
[
i

400000 ft
24000 ft/sec
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figure 2. Velocity of Spacecraft figure 3. Altitude of Spacecraft



