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I. Introduction

Flood routing methods are described as belonging to either
one of two classes : (1) reservoir routing ; and (2) stream cha-
nnel routing. The motions of flood wave velocity and att-ntion

for each of these two classes are introduced.

A general classification of flood routing methods is attem;
pted on the basis of the following criteria :
(1) the eéquations used in the formulation ;
(2) the overall approach to data collection § and (3) the solu=

tion technique.

Reservoir and stream channel routing are described in deta-
il, with particular emphasis on the physical processes involved.
In stream channel routing, the following three approaches are
recogni_zed : (1) the classical approach, of which the Muskingum
method is a notable example ; (2) the numerical approach, based
on the nurerical solution of the complete Saint Venant equations,
either by characteristic of finite difference methods ; and (3)
the simplified approach, which uses a convection-diffusion equ-
ation to describe flood wave movement. A closing remark focuses
attention on the unified theorv of flood wave movement in terms

of kinematic, diffusive and dynamic waves.

Classification of Flood Routing Methods

Based on (Mass—balance : Storage equation and an auxiliary

Squations storage—outflow relationship.

used Mass—and-momentum=balance : Saint Venant equations(
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Based on ( Hydrologic Routing : Observations for channel reaches.
Approach Hydraulic Routing : lMeasurements of channel Charact-—
to Data eristics at individual cross-sections.

collection

Based on [ Analytical Routing : Differential equations ; contine
Solution uous domain.
Technique| Numerical Routing : Algebraic equations ; discrete

domain.

II., The Numerical Approach

a. The Numerical Solﬁtion of the Saint Venant

T e numerical solution of the Saint Venant equations can be
carried out by either : (1) the method of characteristeristics ;
or (2) finite difference methods. In the method of characteris-—
tics, the two partial differential equations (water continuity
and motion) are replaced by four ordinary differential equations
which are solved numerically on a characteristic grid. The int=-
ersections of characteristic lines om the x-—t plane define the

characteristic grid.

In the finite difference methods, the functions(e,g., disc—
narge @, flow area A, stage ¥) and their derivatives (e.g.,
BQ/ax, DA/St) are expressed in terms of their values or a recta-—
ngular grid defined on the x-t plane, A finite difference scheme
is a formula expressing a relationship betwren neighboring values
on the rectangular grid. There are two types of finite differen—
ce Schemes : (1) explicit ; and (2) implicit. Explicit schemes

are those that advance the solution in times and space by solving
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for the unknown variables at a number of grid ooints.

Explicit schemes are relatively simple to formulate, but are
usually limited to a small time step &t by considerations of num-
erical stabilitv. Implicit schemes require the inversion of a
matrix, but are not subject to the gtrict stabilitv criterion of
explicit schemes. In gene?al, implicit schemes are more efficie-—

nt than explicit schemes in their use of computational resources.

b, The Muskingum-Cunge Method

The Muskingum—Cunge method of stiream channel routing is a
variation due to Cunge of the classical Muskingum method. It is
based on the realization that a four-point numerical analog of
the kinematic wave equation and the Muskingum storage relation-—
ship lead to the same routing equation.

In effect, the kinematic wave equation can be written as follows:

28
%%-i“c S3x =0 ---U)

where Q : the flood wave discharge
C : constant
Equation (1) is discretized on the x—t plane.
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in which x and Y = weighting factors ; aAx=spaee interval ; at=

time interval ; c=constant.

settins 7=0.5, Eq. (2) can be expressed as s

e
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In one time increment, the left—hand side of Eq. (3) is I-0 ;

the rignht-hand side is dv/dt if
=% [xL FCAR) 0T eren i)
DI‘OVld.Gd = Ax c

The parameter x is recognized as a weighting factor.
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Cunge derived the numerical diffusion coefficient Myof the disc-
retized kinematic wave equation as

Ma=cox(z -x) =)
by matcring this diffusion coefficient with the physical diffusi-
on coefficient of the convection-diffusion equation, the followi-

ng expression for x is obtained :

o) T ®

By defining the courant number C as the following ratio of celer-
L . C:
1tles ¢ C = —-C_i “'(D

( ) ax

%
and the cell Reynolds number D as the following ratio of dlffu51—
vities : D = (ﬁlg )/(c4x> = —Jo NG

250 3 Sb(34)<

the coefficients Co to C3 can be expressed in the following

reduced
Co = 14C+D - (9)
C; = (1+Cc=D) /co (10)
Co = (=1 +C + D) /Co (11)
Cy = (1 -C+D) /co (12)

Devending on the modeling needs and resources, the calculation
of the parameters in the Muskingum—Cunge method can proceed in
one of two ways : either by using (a) constant parameters, or
(b) variable parameters.

The essential difference between the two is linearity, while

this is not the case in computaiions using variable parameters.

ce. Kinematic Wave Modeling Techniques
The kinematic wave belongs to a class of wave motions in which
the wave property follows from the equation of continuitv alone
kinematic waves exist if there is some sort of functional rela-
tionship between the discharge, Q, the quantitv of water stored
per unit distance, and the position, X.
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properties of kinermatic wave mathematical model. The waves will
be concidered only for one—dimensional systems.

The continuitv e~uation,

;;f+9‘ ~F () =0 - (B
where A is the cross—sectional flow area, Q is the discharge and
q{%,t) is the lateral inlow per unit length.
The second equation required is the realtionship

= Q(h,x) ---(p

This equation states that there is a unique functional relation-
ship between the discharpe and the stage, h, at everr position X.
For Prismatic channels Equation U¢) is equivalent to equating the
friction slope Sf to the bed slope, So.
Crhezv equation 1 = ciJ 350 (I8
C: cheiy resistance coefficient
3 ¢ radius
in the manning formula

o=l gpPag oy
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L?a‘“ = qxt) - ®
R =100t) W
c{r-C “( ))L =constant - &)

Eq (9), (30) are known as the characteristic equations.

If there is no lateral inflow, Q 1s a constant along the charact-

eristic curves given by BEq (#0). C is known as the celeritv of

the kinematic wave.

in eq (I3) 2 = CBySo o/ (4)
m A -q ---(
From Eq (|9) %;_: (%, t) =0 0 = Comtant ()

- 28 - 3 T (W)
G CVSR

If Q is constant along the characteristic then h 1s also constant,

so the characteristics are straight lines.
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