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ALSTRACT

The formulation of depth-averaged two-dimensional mathematical wodel for
the analysis of tide induced circulation in a harbor by the Calerkin finite
element technique is presented. In integration of the Calerkin approach in
time both explicit and implicit method have been tested for one and two dimen-—
ctional water bodies, and the two step Lax~Wendroff explicit method is found
to be effective than the implicit in reducing computing time. The essential
characteristics of the tide induced flow in Busan Harbor with two open bound-
aries has been foccud to be reproduceable in the numerical model and the
simulated results encouraze that the model can be used as a predictive tool.

1. INTRODUCTION

In growing number of problems such as water quality, maintaining water-
ways, dumping wastes, and dredging in estuaries, bays, and harbors, the impor-
tance of knowledge about the behavior of circulation induced by tide has been
stressed, and many mathematical models about circulation and dispersion have
becen proposed. The major impetus has been stemmed from the necessity which
is about the detailed studies of circulation and dispersion and its dovelop-
went of transient predictive model.

Numberical modelds dealling clrculation in estuarine water bodies bhave been
implemented by finite difference scheme. (2,6,7,13) But recently more atten-
tion is pald on the finite element method due to the advantage of flexbility
to accomodate the irregular geometry and the topography of bottom. (3,10,11,
15,18,19,20) The advantage, however, has to suffer from numerical integration
in rime. For the numerical integration in this shallow water problems, the
two-step explig%B %?§—WCndroff scheme(17) is mainly used, which has been found
most suitable. ’

The model described herein predicts vertically integrated longitudinal
and lateral velocity pattern as well as tidal elevation distribution. The
validity of the numerical model has been checked by comparing the computed
results in one dimensional water body with known analytical solution. The
potformance of the model aiso has been tested by comparing the simulated
vesults with the observed values.
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rendes in one dimensional water body with known analytical sclution. The
vairortmanee of the model also has been tested by comparing the simulated

vosalts with the obhoorved valaes,

S RUVERNING EQUATTONYS

Fhe equarions of mocion lfor o two dimencional [low koown as the shallow
Wttt equation can be obtained by integrating the Reynold equations over the
a. Assuming that the vertical accelerations are negligible compared to
ity, i.e., pressure distribution is hydrostatic and the fluid is well
wed, the continuity and borizontal equations becoma(9,10)
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a, denotes deptiv-averape velocity in (=dircction, v is water elevation
from the undisturbed water level and b is water depth f{rom the said
represents the shear stress at bed in i~-direction. ¥or the simpli-
PO the mode} the effceets of Cortolis force, atmospheric pressure
diitorence, and horizontal viscoslity s are dgnored. Throushout this paper
ineos notation is used, for fustance, partial differentiation with respect to
., ts denoted by ( vsi- The summation is represented by repeated indices. (%)

Celh

To solve the system of eqs.{l) and (2) boundary conditons are neceded to
Lo wstablished.,  Tn this study the boundary consists of three parts:
on laud type boungarices

e ¢
uny (3

i a4 viver cnters the body of water, velocity is prescribed

U, ® U, ,escasecasoorsssecssranceoenscasee (&)
i i
waker elevation is specified on the open sea boundary
V= 11 tovsvoesrossnsessossoorasseacnsnanas (5)

the verbar denotes the prescribed value on the boundary and 71, represents
componend of vector normal to the boundary. As an initial cundiéions, the
ictal seate has to be given or assumed.

Lo FINTTE BEVEMUNT FORMUILATION

in ovder to build finite eiement model the monentum equation (2) and con-
sity equation (1) can be expressed in the following Galerkin weighted resi-

stine bomethod, S
¢ o SNLY GV o+ 7 (utya. YAy Koy VA4S (1 Vs
“v(”i 5ty Ay Jv\uiuiui,i)uv fv(uign,i)d fv‘ui[Bi)d’ 0 ..(6)

FoF godv o Sfnd i, b, 1AV = 0 e (D)
where of and N* are the weighting functions for velocity and water elevation,
rosycctively. The flow domain of intercst divided into small regions
vodioed Findte elements. I the same Interpeiastion function is used for both
veloolty and water elevation, then appreximate cquations for trial function
fnowcuehn triangular element can be wyibteu as

g = ¢auli’ n = @anu T € )
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denctes the nodal values of velocity at node o in the i1 - direc-

in which u
By the same fashion approxi-

tion and n;lrepresents water clevation at node .
mate equations for the weighting function can be given as

u? = ¢uugi , Nk = ¢un§ N ¢ °)
in which u*, and n* arc the corresponding nodal values of the welghting func-
tions. Sugétituti%g eqs. (8) and(9) into eqs.(6) and(7) and rearranging the
terms, the finite element governing equations can be obtained for all arbitrary
nodal vaiues of velocity and water elevation. The procedure leading to eqs.
(10Y aud (11) has been worked out by kawahara(11) and used here.

+Dw.=0 ceveiavenana. (10)
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where
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The above expressions for each finite clement can be assembled for the whole
fiow domain to yield the following equation :

(12)

v, + K v, +F =
Mg e gl FEL 70
1s made up of

where v, denotes the unknown variables u, and np together, M
p o%ger terms are

%15 and E;% and kuﬁ contains BuiBijqu and GGBJY uﬁj' All
included in F .

3
4 NUMERICAL INTEGRATION TN TIME

Two different methods, Crank - Nicolson implicit scheme(14,10) 4ng tyo-
step Lax~-Wendrofli explicit scheme,(10’11> were applied in this paper.

buring short time lucrement At, assume that
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vhere gsuperscript » denotes the time step. Introducing these results into
eg. (12) the following Crank-Nicolson implicit scheme 15 derived
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solve te non=linear oq.(15) the conventional iterative method wichin each
ticw stey is ewployed here. For explicit imethod, two~step Lax-Wendroff scheme

ST I
B i1
MoV, V- N ¢ 1)
SRR Qe B (16)
FAY i s .
Y = M ov + e cerecctencrinanesens (17)
San s wb B o )

. . . (1,21)
to avoid the inversion of nass matrix M ., the diagonal lumped matrix >
R "~
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wheroe L duenotes the fuwped mass wacrix.

The criveria used tu determine the time step were as follows:

for dmplicit weene 120 ap < Lo L 20)

= 20
2 2
At T min (FF7750) e ieiiininnenee. (21
Tz (VZ Vgh (2D
wiere T de period of tide and Ax is side length of element

. (5,70
for explicit schemo()’ e

Do VERIFICATION AND APPLICATION OF MODIL

As the first test for verivication of the model. a rectangular basin is
wess wince its analytical solution has been derived.(9,12,15,19,20) One of
T ur sides of the recvangular is open boundary and three other sides are
Ll boundavies. At the open boundary water clevation is prescribed and along
the remaining boundarics zero normal velocity condition is maintained at each
tini: step. The cowputation has been carried out by both implicit and explicit
nethod and the numerical results of both implicit and explicit wethods show
paad agreenent to the analytical solution except for the superimposed oscilla-
Cden as is often the cace in dmplicit method, (15

As the second test, the model iy
applied to L-shaped two diwensional
vatey body with narrow one side of apen
boundary.  Both results show reasonably
pesd agreement, but the jmplicit sheeme
tales more time than the explicit one
done in the rectangular case.
Frow the cosputational point of view,
usiy expliicit scheme is iound to be

denirable because of logy computaticual
Lime,
The applicaticn of the model to
dactual situation is for Busan iHarbor a A-F,E-L land(whorves)

3 . v C-Cin-I breckwat
which 1s located at the South-east of chwatera

. 8-C istand
Kerea and bas seriocus water pellution
problem due to ever increasing inflow Fip.1 TFinite element grid uf Busan

ot pollutants,  Fig, | shows the finite Harbor
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element idealization of Busan Harbor based on the three-node triangular finite
element. For the numerical integration in time, the explicit two-step Lax-
Wendroff scheme is used owing to the aforementioned reasonings throughout the
applications. There are two open boundaries (A-B, C-D) in this domain of whick
A~B is regarded as free boundary(ll). It means that the flow passes through
the boundary back and forth.

To investigate the nature of the f{ree boundary, a simplified configuratior
to Busan Harbor as shown in Fig.2 is employed.
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Fig.2 Finite element grid of Fig.3 Computed velocity fileld
simplified Busan Harbor (one cycle of 4500 sec)

On the free boundary (G-H)}, no boundary condition is imposed on velocity and
water elevation as well. At the open sea boundary (I-J), water elevation is
specified and along the remaining boundaries zero normal velocity of land
boundary condition is maintained. The computed flow patterns shown in Fig.3
explain the free boundary. Plotted in Fig.4 are the computed velocity and
water elevation at nodes 21 and 29. The results of the test of the simplified
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Fig.4 Computed velocities and water elevations
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harbor cncourage that the wodel can be applicd to the actual geometry of Busan
Harbor,

Boundary conditions for the actual Busan Harbor:
on the free boundary (A-B), no boundary conditions is imposed,
on the open sen boundary {C-D),

- 29

n o= 0.6 (1-C0S F t) e rraeerese et senaseana (22)

ou the river infiow boundary (E-F),
u o= ~0,05 PP .26
n
and  along the remaining land boundaries,
o= 0 R ¢71/3
n -
where T i the period of tide (44700 sec) and u is normal velocity measured
by w/sec. As the initiul conditlons, still water condition (cold start) is

assumed.

In the determination of time step eq.(21) is used and water depth h in
the rase of Busan Harvbor is measured from mean low-water épring level (MLWS).

S omssec

et 2 CiNVIBOC

Fig.5 Simulated tidal currents in Busan Harbor
Fig.5 illustrates the computed currents at flood and ebb. The computed water
Tovations and curreat velocities at representative nodes are shown in Fig.6
The simulated current patterns are well in agreement to the measurcmeats. The
computed velocities are gpenerally less than the observed(8). This seems due

f

ta the fact that the observed velocities are gencerally the maximoam values and
che computed velocdties ave the depth averaged one.
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Fig.6 Simulated tidal velocities and tidal elevations at representative
points ip Busan Harbor

6. CONCLUSIONS

Depth~average1 two-dimensional numerical model capable of predicting the
tidal characteristics with two open sea boundaries is presented. TFor integra-
tion of the Galerkin finite element technique in time, some of explicit and
implicit methods have been tested., From the resulting tests of the model for
one and two dimensional water bodies, the two step Lax-Wendrof{ explicit
method is found to have advantages over the implicit method in reducing the
computing time. The flow field of a water body with a free and an open boun-
dat , which {s similar to Busan Harbor in character, has been investipgated by
the numerical model. Then, the numerical model has been applied to Busan
Harbor and found that the essential tidal flow characteristics can be repro~
duced in the model reasonably well.
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