Characterization of Pyribenzoxim Metabolizing Enzymes in Rat Liver Microsomes

  • Liu Kwang-Hyeon (Department of Pharmacology and Pharmaco Genomics Research Center, Inje University College of Medicine) ;
  • Moon Joon-Kwan (School of Agricultural Biotechnology, Seoul National University) ;
  • Seo Jong-Su (Department of Molecular Biosciences and Bioengineering, University of Hawaii) ;
  • Park Byeoung-Soo (School of Agricultural Biotechnology, Seoul National University) ;
  • Koo Suk-Jin (LG Life Sciences Ltd.) ;
  • Lee Hye-Suk (College of Pharmacy, Wonkwang University) ;
  • Kim Jeong-Han (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2006.03.01

Abstract

The primary metabolism of pyribenzoxim was studied in rat liver microsomes in order to identify the cytochrome P450 (CYP) isoform(s) and esterases involved in the metabolism of pyribenzoxim. Chemical inhibition using CYP isoform-selective inhibitors such as ${\alpha}$-naphthoflavone, tolbutamide, quinine, chlorzoxazone, troleandomycin, and undecynoic acid indicated that CYP1A and CYP2D are responsible for the oxidative metabolism of pyribenzoxim. And inhibitory studies using eserine, bis-nitrophenol phosphate, dibucaine, and mercuric chloride indicated pyribenzoxim hydrolysis involved in microsomal carboxylesterases containing an SH group (cysteine) at the active center.

Keywords

References

  1. Ali, B., Kaur, S., James, E.C. and Parmar, S.S. (1985): Identification and characterization of hepatic carboxylesterases hydrolyzing hydrocortison esters. Biochem. Pharmacol., 34, 1881-1886 https://doi.org/10.1016/0006-2952(85)90302-8
  2. Augustinsson, K. (1958): Electrophoretic separation and classification of blood plasma esterases. Nature, 181, 1786-1789 https://doi.org/10.1038/1811786a0
  3. Bae, Y.T., Lee, J.H. and Koo, S.J. (1997): In vitro acetolactate synthase inhibition of LGC-40863 in rice and barnyardgrass. Kor. J. Weed Sci., 17, 66-70
  4. Chauret, N., Gauthier, A., Martin, J. and Nicoll-Griffith, D.A. (1997): In vitro comparison of cytochrome P450-mediated metabolic activities in human, dog, cat, and horse. Drug Metab. Dispos., 25, 1130-1136
  5. Chauret, N., Gauthier, A. and Nicoll-Griffith, D.A. (1998): Effect of common organic solvents on in vitro cytochrome P450- mediated metabolic activities in human liver microsomes. Drug Metab. Dispos., 26, 1-4
  6. Draper, A.J. and Parkinson, A. (1997): Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. Arch. Biochem. Biophy., 341, 47-61 https://doi.org/10.1006/abbi.1997.9964
  7. Ecobichon, D.J. (1970): Characterization of the esterases of canine serum. Can. J. Biochem. Physiol., 48, 1359-1367 https://doi.org/10.1139/o70-210
  8. Ecobichon, D.J. and Kalow, W. (1963): Action of organophosphorous compounds upon esterases of human liver. Can. J. Biochem. Physiol., 1537-1546
  9. Emoto, C., Yamazaki, H., Yamasaki, S., Shimada, N., Nakajima, M. and Yoko, T. (2000): Characterization of cytochrome P450 enzymes involved in drug oxidations in mouse intestinal microsomes. Xenobiotica, 30, 943-953 https://doi.org/10.1080/00498250050200104
  10. Erdos, E.G., Debay, C.R. and Westerman, M.P. (1959): Activation and inhibition of the arylesterase of human serum. Nature, 184, 430-431 https://doi.org/10.1038/084430a0
  11. Guengerich, F.P. (1991): Reaction and significance of cytochrome P-450 enzymes. J. Biol. Chem., 266, 10019-10022
  12. Iatsimirskaia, E., Tulebaev, S., Storozhum, E., Utkin, I., Smith, D., Gerber, N. and Koudriakova, T. (1997): Metabolism of rifabutin in human interocyte and liver microsomes: Kinetic parameters, identification of enzyme systems, and drug interactions with macrolides and antifungal agents. Clin. Pharmacol. Ther., 61, 554-562 https://doi.org/10.1016/S0009-9236(97)90135-1
  13. Kim, K.Y., Kim, J., Liu, K.H., Lee, H.S. and Kim, J.H. (2000): In vitro metabolism of pyribenzoxim. Agric. Chem. Biotechnol., 43, 49-53
  14. Kobayashi, S., Murray, S., Watson, D., Sesardic, D., Davies, D.S. and Boobis, A.R. (1989): The specificity of inhibition of debrisoquine-4-hydroxylase activity by quinidine and quinine in the rat is the inverse of that in man. Biochem. Pharmacol., 38, 2795-2799 https://doi.org/10.1016/0006-2952(89)90433-4
  15. Koo, S.J., Ahn, S.C., Lim, J.S., Chae, S.H., Kim, J.S., Lee, J.H. and Cho, J.H. (1997): Biological activity of the new herbicide LGC-40863 {benzophenone O-[2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoyl]oxime}. Pestic. Sci., 51, 109-114 https://doi.org/10.1002/(SICI)1096-9063(199710)51:2<109::AID-PS585>3.0.CO;2-7
  16. Koo, S.J., Kim, J.S. and Lee, J.H. (1998): Foliar retention of the herbicide pyribenzoxim (1% EC), and its effects on herbicidal activity and rice phytotoxicity. Kor. J. Weed Sci., 18, 304-313
  17. Krisch, K. (1971): Carboxylic ester hydrolases. In The enzymes. Vol V, pp. 43-69, Academic Press, New York
  18. Liu, K.H., Moon, J.K., Sung, H.J., Kang, S.H., Koo, S.J., Lee, H.S. and Kim, J.H. (2001): In vivo pharmacokinetics of pyribenzoxim in rats. Pest Manag. Sci., 57, 1155-1160 https://doi.org/10.1002/ps.409
  19. Lubet, R.A., Mayer, R.T., Cameron, J.W., Nims, R.W., Burke, M.D., Wolff, T. and Guengerich, F.P. (1985): Dealkylation of pentoxyresorufin: A rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Arch. Biochem. Biophy., 238, 43-48 https://doi.org/10.1016/0003-9861(85)90138-9
  20. McCracken, N.W., Blain, P.G. and Williams, F.M. (1993): Human xenobiotic metabolizing esterases in liver and blood. Biochem. Pharmacol., 46, 1125-1129 https://doi.org/10.1016/0006-2952(93)90459-A
  21. Murray, M. and Reidy, G.F. (1990): Selectivity in the inhibition of mammalian cytochrome P-450 by chemical agents. Pharmacol. Rev., 42, 85-101
  22. Newton, D.J., Wang, R.W. and Lu, A.Y.H. (1995): Cytochrome P450 inhibitors: evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab. Dispos., 23, 154-158
  23. Nigg, H.N., Ramos, L.E., Graham, E.M., Sterling, J., Brown, S. and Cornell, J.A. (1996): Inhibition of human plasma and serum butyrylcholinesterase (EC 3.1.1.8) by $\alpha$-chaconine and $\alpha$-solanine. Fund. Appl. Toxicol., 33, 272-281 https://doi.org/10.1006/faat.1996.0165
  24. Nnane, I.P. and Damani, L.A. (1999): Metabolism of ethyl methyl sulphide and sulphoxide in rat microsomal fractions. Xenobiotica, 29, 1101-1113 https://doi.org/10.1080/004982599237985
  25. Omura, T. and Sato, R. (1964): The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemo protein nature. J. Biol. Chem., 239, 2370-2378
  26. Reiner, E., Pavkovic, E., Radic, Z. and Simeon, V. (1998): Differentiation of esterases reacting with organophosphorous compounds. Chem-Biol. Interactions, 87, 77-88
  27. Seo, J.S., Liu, K.H., Chung, K.H., Shin, J.S. and Kim, J.H. (2002): Bioconcentration and depuration of pyribenzoxim in common carp (Cyprinus carpio). Bull. Environ. Contam. Toxicol., 68, 617-622 https://doi.org/10.1007/s001280299
  28. Shin, H.C., Shim, H.O., Ahn, S.C., Cho, J.H., Chung, M.K., Han, S.S. and Roh, J.K. (1998): Pharmacokinetic analysis for assessing developmental toxicity of a new synthetic acetolactate synthase inhibitor, LGC-40863, in rats. J. Pharmacol. Exp. Ther., 285, 795
  29. Simeon, V., Reiner, E., Skrinjaric-Spoljar, M. and Krauthacker, B. (1988): Cholinesterases in rabbit serum. Gen. Pharmacol., 19, 849-853 https://doi.org/10.1016/S0306-3623(88)80017-X
  30. Smith, P.K., Krohn, R.I. Hermanson, G.T., Mallia, A.K. Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. (1985): Measurement of protein using bicinchoninic acid. Aanl. Biochem., 76-85
  31. Tang, J. and Chambers, J.E. (1999): Detoxication of paraoxon by rat liver homogenate and serum carboxylesterases and A-esterases. J. Biochem. Molecular Toxicology, 13, 261-268 https://doi.org/10.1002/(SICI)1099-0461(1999)13:5<261::AID-JBT6>3.0.CO;2-0
  32. Teramura, T., Fukunaga, Y., Van Hoogdalem, E.J., Watanabe, T. and Higuchi, S. (1997): Examination of metabolic pathways and identification of human liver cytochrome P450 isozymes responsible for the metabolism of barnidipine, a calcium channel blocker. Xenobiotica, 27, 885-900 https://doi.org/10.1080/004982597240064
  33. Whittaker, M. (1984): Cholinesterases. In Methods of enzymatic analysis Vol. IV, Enzymes 2: Esterases, Glycosidases, lyases, ligases, pp. 52-74, Verlag Chemie, Weinheim
  34. Yoo, J.S.H., Cheung, R.J., Patten, C.J., Wade, D. and Yang, C.S. (1987): Nature of N-nitrosodimethylamine demethylase and its inhibitors. Cancer Res., 47, 3378-3383
  35. Ziegler, D.M. (1980): Microsomal flavin-containing monooxygenases: oxygenation of nucleophile nitrogen and sulphur compounds. In Enzymatic basis of detoxification, vol. 1, pp. 201-227, Academic Press, New York