DOI QR코드

DOI QR Code

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Received : 2019.06.19
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

Keywords

face recognition;face detection;feature vector;vector compression and expansion;3D face generation;3D face recognition

References

  1. M.Akhil jabbar, B.L Deekshatulua, Priti Chandra, "Classification of Heart Disease Using K- Nearest Neighbor and Genetic Algorithm" Procedia Technology 10 ( 2013 ) 85 - 94. https://doi.org/10.1016/j.protcy.2013.12.340
  2. Mohammed Hazim Alkawaz, Dzulkifli Mohamad, Ahmad Hoirul Basori, Tanzila Saba, "Blend Shape Interpolation and FACS for Realistic Avatar" Springer 3D Res (2015) 6:6. https://doi.org/10.1007/s13319-015-0038-7
  3. Henry A. Rowley, Shumeet Baluja, Takeo Kanade, "Neural Network Based Face Detection" Computer Vision and Pattern Recognition, 1996, Carnegie Mellon University.
  4. Cheol-woong Lee, Ilmin Kim, Sea-Hong Cho, "Designing and Implementing 3D virtual Face Aesthetic Surgery System", Journal of Digital Contents Society Vol. 9 No. 4 Dec. 2008(pp. 751-758).
  5. Yi Jung-Hoon, Lee Chan, Rhee Phill-Kyu, "A Mapping Algorithm for Real Time Animation Based in Facial Features", The Journal of the Korea information Processing Society Vol.7 No.2,pp. 919-922, 2000.
  6. Dong-Hoon Kim, Dae-Kyu Shin, Min-Young Eum, Hyun-Sool Kim, Sang-Hui Park, "Face Recognition using Face Region Information in the Dynamic Link Architecture", The KIEE Summer Conference 2002, pp 2583-2585. Jul 2002.
  7. Gi-Young Go, Doo-Young Kim, "Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features"," The Journal of The Korea Institute of Convergence Signal Processing, Vol 6, No. 1, pp-15-22, Jan. 2005.
  8. Kyunghee Lee, Hyeran Gyun, Chansup Chung, "Facial Feature Extraction for Face and Facial Expression Recognition", The Journal of Korean Society for Emotion and Sensibility, pp. 25-29, 1998.