Approximation Solvability for a System of Nonlinear Variational Type Inclusions in Banach Spaces

SALAHUDDIN
Department of Mathematics, Jazan University, Jazan-45142, Kingdom of Saudi Arabia
e-mail: drsalah12@hotmail.com

Abstract. In this paper, we consider a system of nonlinear variational type inclusions involving \((H, \eta, \phi)\)-monotone operators in real Banach spaces. Further, we define a proximal operator associated with an \((H, \eta, \phi)\)-monotone operator and show that it is single valued and Lipschitz continuous. Using proximal point operator techniques, we prove the existence and uniqueness of a solution and suggest an iterative algorithm for the system of nonlinear variational type inclusions. Furthermore, we discuss the convergence of the iterative sequences generated by the algorithms.

1. Introduction

Variational inequalities, variational inclusions, complementarity problems and equilibrium problems are among the most interesting, novel, innovative and important mathematical problems. They have been widely studied by many authors in the recent years due to their wide applications in mechanics, physics, optimizations and controls, nonlinear programming, economics and transportation, equilibriums and engineering sciences, see, [6, 10, 13, 22, 32, 33, 34].

Very recently, Luo and Huang [28] and Kim et al. [25] introduced and studied a new class of \((H, \eta, \phi)\)-monotone operators, respectively \((H, \phi, \psi)\)-\(\eta\)-monotone operators in Banach spaces. This provides a unified framework for a class of maximal monotone operators, maximal \(\eta\)-monotone operators, \(H\)-monotone operators and \((H, \eta)\)-monotone operators. Using proximal point operator techniques, they studied the convergence analysis of the iterative algorithms for some classes of variational inclusions, see, [11, 12, 14, 15, 16, 23, 26, 36].

Motivated and inspired by such works as [2, 8, 9, 18, 19, 21, 24, 27, 30, 31, 35],
in this paper we further generalize these proximal point operator techniques and define a new iterative algorithm for solving a system of nonlinear variational type inclusions. Moreover, we discuss the convergence for the approximate solutions of a system of nonlinear variational type inclusions in real Banach spaces.

2. Preliminaries

Let \(X \) be a real Banach space endowed with the topological dual space \(X^* \), the norm \(\| \cdot \| \) and the dual pairing \(\langle \cdot , \cdot \rangle \) between \(X \) and \(X^* \); \(2^X \) denotes the family of all nonempty subsets of \(X \). The normalized duality mapping \(J : X \to 2^{X^*} \) is defined by
\[
J(x) = \{ f \in X^* : \langle f, x \rangle = \| f \| \| x \|, \| f \| = \| x \| \}, \forall x \in X.
\]
Let \(\mathcal{U} = \{ x \in X : \| x \| = 1 \} \). A Banach space \(X \) is said to be uniformly convex if for each \(\epsilon \in (0,2] \), there exists \(\delta > 0 \) such that for any \(x, y \in \mathcal{U} \),
\[
\| x - y \| \geq \epsilon \quad \text{implies} \quad \| x + y \| < 1 - \delta.
\]
We note that, the \(L_p, \, \ell_p \) and Sobolev spaces \(W^p_m \) \((1 < p < \infty)\) are uniformly convex.

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach space \(X \) is said to be smooth if the limit,
\[
(*) \quad \lim_{t \to 0} \frac{\| x + ty \| - \| x \|}{t}
\]
exists for all \(x, y \in \mathcal{U} \). It is also said to be uniformly smooth if the limit \((*)\) is attained uniformly for \(x, y \in \mathcal{U} \). Again, we note that if \(X \) is uniformly convex and uniformly smooth, then \(J \) is invertible and \(J^{-1} = J^* \) (the duality mapping from \(X^* \) to \(X^{**} \)), hence \(J \) is a single valued and if \(X = H \) (a Hilbert space) then \(J \) is an identity mapping.

We define a function \(\rho_X : [0, +\infty) \to [0, +\infty) \) called the modulus of smoothness of \(X \) as follows:
\[
\rho_X(t) = \sup \left\{ \frac{\| x + y \| + \| x - y \|}{2} - 1 : \| x \| \leq 1, \| y \| \leq t \right\}.
\]
It is known that a Banach space \(X \) is uniformly smooth if and only if
\[
\lim_{t \to \infty} \frac{\rho_X(t)}{t} = 0.
\]
Let \(q \) be a fixed real number with \(1 < q \leq 2 \). Then a Banach space \(X \) is said to be \(q \)-uniformly smooth if there exists a constant \(c \) such that
\[
\rho_X(t) \leq ct^q, \quad \forall t > 0.
\]
Let $CB(X)$ be a family of all nonempty closed and bounded subsets of X; $d(\cdot, \cdot)$ be a Hausdorff metric on $CB(X)$ defined by

$$
\delta(A, B) = \max\{\sup_{x \in A} d(x, B), \sup_{y \in B} d(A, y)\},
$$

where $A, B \in CB(X), d(x, B) = \inf_{y \in B} d(x, y)$ and $d(A, y) = \inf_{x \in A} d(x, y)$.

The following concepts and results are needed in the sequel.

Definition 2.1. Let $T : X \to X^*$ and $g : X \to X$ be two single valued mappings. Then

(i) T is monotone, if

$$
\langle T(x) - T(y), x - y \rangle \geq 0, \forall x, y \in X;
$$

(ii) T is strictly monotone, if

$$
\langle T(x) - T(y), x - y \rangle > 0, \forall x, y \in X,
$$

and equality holds if and only if $x = y$;

(iii) T is α-strongly monotone if there exists a constant $\alpha > 0$ such that

$$
\langle T(x) - T(y), x - y \rangle \geq \alpha \|x - y\|^2, \forall x, y \in X;
$$

(iv) T is β-Lipschitz continuous if there exists a constant $\beta > 0$ such that

$$
\|T(x) - T(y)\| \leq \beta \|x - y\|, \forall x, y \in X;
$$

(v) g is κ-strongly accretive if there exists $j(x - y) \in J(x - y)$ and a constant $\kappa > 0$ such that

$$
\langle g(x) - g(y), j(x - y) \rangle \geq \kappa \|x - y\|^2, \forall x, y \in X.
$$

Definition 2.2. Let $M : X \to 2^{X^*}$ be a multivalued mapping, $H : X \to X^*$ and $\eta : X \times X \to X$ be the single valued mappings. Then

(i) M is monotone, if

$$
(u - v, x - y) \geq 0, \forall x, y \in X, u \in M(x), v \in M(y);
$$

(ii) M is η-monotone, if

$$
\langle u - v, \eta(x, y) \rangle \geq 0, \forall x, y \in X, u \in M(x), v \in M(y);
$$

(iii) M is strictly η-monotone, if

$$
(u - v, \eta(x, y)) > 0, \forall x, y \in X, u \in M(x), v \in M(y)
$$

and equality holds if and only if $x = y$;
(iv) M is λ-strongly η-monotone if there exists a constant $\lambda > 0$ such that
$$\langle u - v, \eta(x, y) \rangle \geq \lambda \|x - y\|^2, \forall x, y \in X, u \in M(x), v \in M(y);$$

(v) M is maximal monotone, if M is monotone and
$$(J + \lambda M)(X) = X^*, \forall \lambda > 0,$$
where J is a normalized duality mapping;

(vi) M is maximal η-monotone, if M is monotone and
$$(J + \lambda M)(X) = X^*, \forall \lambda > 0;$$

(vii) M is H-monotone, if M is monotone and
$$(H + \lambda M)(X) = X^*, \forall \lambda > 0;$$

(viii) M is (H, η)-monotone, if M is η-monotone and
$$(H + \lambda M)(X) = X^*, \forall \lambda > 0;$$

(ix) η is τ-Lipschitz continuous if there exists a constant $\tau > 0$ such that
$$\|\eta(x, y)\| \leq \tau \|x - y\|, \forall x, y \in X.$$

Definition 2.3. For all $x, y \in X$, a mapping $N : X \times X \to X^*$ is said to be

(i) β_1-Lipschitz continuous with respect to first argument if there exists a constant $\beta_1 > 0$ such that
$$\|N(u, \cdot) - N(v, \cdot)\| \leq \beta_1 \|u - v\|;$$

(ii) β_2-Lipschitz continuous with respect to second argument if there exists a constant $\beta_2 > 0$ such that
$$\|N(\cdot, u) - N(\cdot, v)\| \leq \beta_2 \|u - v\|.$$

Definition 2.4.([29]) Let X be a complete metric space, $T : X \to CB(X)$ be a set valued mapping. Then for any $\epsilon > 0$ and for any $x, y \in X, u \in T(x)$ there exists $v \in T(y)$ such that
$$d(u, v) \leq (1 + \epsilon)d(T(x), T(y)).$$

Lemma 2.5. Let X be a uniformly smooth Banach space and $J : X \to 2^{X^*}$ be a normalized duality mapping. Then for all $x, y \in X$,
(i) \(\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x + y) \rangle \);

(ii) \[\langle x - y, j(x) - j(y) \rangle \leq 2d^2 \rho_X \left[\frac{4\|x - y\|}{d} \right] \]

where \(d = \sqrt{\|x\|^2 + \|y\|^2} \).

Definition 2.6. Let \(X \) be a Banach space with the dual space \(X^* \). Let \(H : X \to X^* \), \(\varphi : X^* \to X^* \), \(\eta : X \times X \to X \) be single valued mappings and \(M : X \to 2^{X^*} \) be a multivalued mapping. The mapping \(M \) is said to be \((H, \varphi, \eta)-\text{monotone}\) if \(\varphi \circ M \) is \(\eta \)-monotone and

\[(H + \varphi \circ M)(X) = X^*. \]

Definition 2.7. Let \(X \) be a Banach space with the dual space \(X^* \). Let \(H : X \to X^* \), \(\varphi : X^* \to X^* \), \(\eta : X \times X \to X \) be single valued mappings and \(M : X \to 2^{X^*} \) be a multivalued mapping. The mapping \(M \) is said to be

(i) \((H, \varphi)\)-monotone, if \((\varphi \circ M) \) is monotone and

\[(H + \varphi \circ M)(X) = X^*. \]

(ii) maximal \((\varphi, \eta)\)-monotone, if \((\varphi \circ M) \) is \(\eta \)-monotone and

\[(H + \varphi \circ M)(X) = X^*. \]

(iii) maximal \(\varphi \)-monotone, if \((\varphi \circ M) \) is monotone and

\[(H + \varphi \circ M)(X) = X^*. \]

Examples 2.8. Let \(X = R = (-\infty, +\infty) \), \(M(x) = x^2 \), \(H(x) = e^x \), \(\forall x \in R \) and \(\varphi(x) = \sqrt{x}, \forall x \geq 0 \). Let \(\eta(x, y) = x^4 - y^4, \forall x, y \in R \). Then

\[\langle M(x) - M(y), \eta(x, y) \rangle = \langle x^2 - y^2, x^4 - y^4 \rangle = (x^2 + y^2)(x^2 - y^2)^2 \geq 0 \]

and

\[(I + M)(x) = x + x^2 = \left(x + \frac{1}{2} \right)^2 - \frac{1}{4} \geq -\frac{1}{4}. \]

This shows that \((I + M) \) is not surjective. Since

\[(H + M)(x) = e^x + x^2 > 0. \]
Moreover, we have
\[(\varphi \circ M(x) - \varphi \circ M(y), x - y) = (x - y, x - y) = (x - y)^2 \geq 0 \]
and
\[(I + \varphi \circ M)(x) = x + x - 2x. \]

It follows that \((I + \varphi \circ M)\) is surjective. It is easy to see that
\[(H + \varphi \circ M)(x) = e^x + x \]
and so \((H + \varphi \circ M)\) is surjective. Therefore, \(M\) is both maximal \(\varphi\)-monotone and \((H, \varphi)\)-monotone.

Theorem 2.9. Let \(X\) be a Banach space with the dual space \(X^*\). Let \(\varphi : X^* \to X^*, \eta : X \times X \to X\) be single valued mappings, \(H : X \to X^*\) be a strictly \(\eta\)-monotone mapping and \(M : X \to 2^{X^*}\) be a \((H, \eta, \varphi)\)-monotone mapping if \(\langle u - v, \eta(x, y) \rangle \geq 0, \forall (y, v) \in \text{Graph}(\varphi \circ M)\). Then \(u \in \varphi \circ M(x)\), where \(\text{Graph}(\varphi \circ M) = \{(x, x^*), \varphi \circ M(x) \mid x^* \in (\varphi \circ M)(x)\}\).

Proof. Suppose that there exists \((x_0, u_0)\) such that
\[\langle u_0 - v, \eta(x_0, y) \rangle \geq 0, \forall (y, v) \in \text{Graph}(\varphi \circ M). \]

Since \(M\) is \((H, \eta, \varphi)\)-monotone, we know that \((H + \varphi \circ M)(X) = X^*\) and so there exists \((x_1, u_1) \in \text{Graph}(\varphi \circ M)\) such that
\[H(x_1) + u_1 = H(x_0) + u_0. \]

Thus, we have
\[\langle u_0 - u_1, \eta(x_0, x_1) \rangle = -(H(x_0) - H(x_1), \eta(x_0, x_1)) \geq 0. \]

The strict \(\eta\)-monotonicity of \(H\) implies that \(x_1 = x_0\). Thus from above, we have \(u_1 = u_0\). Hence \((x_0, u_0) \in \text{Graph}(\varphi \circ M)\), i.e., \(u_0 \in (\varphi \circ M)(x_0)\). \(\square\)

Theorem 2.10. Let \(X\) be a Banach space with the dual space \(X^*\). Let \(\varphi : X^* \to X^*, \eta : X \times X \to X\) be single valued mappings, \(H : X \to X^*\) be a strictly \(\eta\)-monotone mapping and \(M : X \to 2^{X^*}\) be a \((H, \eta, \varphi)\)-monotone mapping. Then \((H + \rho \varphi \circ M)^{-1}\) is a single valued mapping.

Proof. For any given \(x^* \in X^*\), let \(x, y \in (H + \rho \varphi \circ M)^{-1}(x^*)\). It follows that
\[\frac{1}{\rho} \{ x^* - H(x) \} \in (\varphi \circ M)(x), \]
\[\frac{1}{\rho} \{ x^* - H(y) \} \in (\varphi \circ M)(y). \]
From the η-monotonicity of $(\varphi \circ M)$ implies that
\[
\frac{1}{\rho} \langle x^* - H(x) - (x^* - H(y)), \eta(x, y) \rangle = \frac{1}{\rho} \langle -H(x) + H(y), \eta(x, y) \rangle \geq 0.
\]
This implies that $x = y$ and $(H + \rho \varphi \circ M)^{-1}$ is a single valued mapping. \(\square\)

Definition 2.11. Let X be a reflexive Banach space with dual space X^*. Let $\varphi : X^* \to X^*$, $\eta : X \times X \to X$ be single valued mappings, $H : X \to X^*$ be a strictly η-monotone mapping and $M : X \to 2^{X^*}$ be a (H, η, φ)-monotone mapping. Then the proximal mapping $R_M^{H, \eta, \varphi} : X^* \to X$ is defined by
\[
R_M^{H, \eta, \varphi}(x^*) = (H + \rho \varphi \circ M)^{-1}(x^*), \forall x^* \in X^*.
\]

Theorem 2.12. Let X be a reflexive Banach space with dual space X^*. Let $\varphi : X^* \to X^*$ be a single valued mapping, $\eta : X \times X \to X$ be a τ-Lipschitz continuous mapping, $H : X \to X^*$ be a γ-strongly η-monotone mapping and $M : X \to 2^{X^*}$ be a (H, η, φ)-monotone mapping. Then the proximal mapping $R_M^{H, \eta, \varphi} : X^* \to X$ is $\tau \gamma$-Lipschitz continuous, i.e.,
\[
\|R_M^{H, \eta, \varphi}(x^*) - R_M^{H, \eta, \varphi}(y^*)\| \leq \frac{\tau}{\gamma}\|x^* - y^*\|, \forall x^*, y^* \in X^*.
\]

Proof. Let $x^*, y^* \in X^*$. It follows that
\[
R_M^{H, \eta, \varphi}(x^*) = (H + \rho \varphi \circ M)^{-1}(x^*);
R_M^{H, \eta, \varphi}(y^*) = (H + \rho \varphi \circ M)^{-1}(y^*)
\]
then
\[
\frac{1}{\rho}\{x^* - H(R_M^{H, \eta, \varphi}(x^*))\} \in (\varphi \circ M)(R_M^{H, \eta, \varphi}(x^*))
\]
\[
\frac{1}{\rho}\{y^* - H(R_M^{H, \eta, \varphi}(y^*))\} \in (\varphi \circ M)(R_M^{H, \eta, \varphi}(y^*)).
\]
Since $(\varphi \circ M)$ is η-monotone, we have
\[
\frac{1}{\rho} \langle x^* - H(R_M^{H, \eta, \varphi}(x^*)) - (y^* - H(R_M^{H, \eta, \varphi}(y^*))), \eta(R_M^{H, \eta, \varphi}(x^*), R_M^{H, \eta, \varphi}(y^*)) \rangle \geq 0.
\]
It follows that
\[
\tau \|x^* - y^*\| \|R_M^{H, \eta, \varphi}(x^*) - R_M^{H, \eta, \varphi}(y^*)\| \geq \|x^* - y^*\| \|\eta(R_M^{H, \eta, \varphi}(x^*), R_M^{H, \eta, \varphi}(y^*))\|
\]
\[
\geq (x^* - y^*, \eta(R_M^{H, \eta, \varphi}(x^*), R_M^{H, \eta, \varphi}(y^*)))
\]
\[
\geq (H(R_M^{H, \eta, \varphi}(x^*)) - H(R_M^{H, \eta, \varphi}(y^*)), \eta(R_M^{H, \eta, \varphi}(x^*), R_M^{H, \eta, \varphi}(y^*)))
\]
\[
\geq \gamma \|R_M^{H, \eta, \varphi}(x^*) - R_M^{H, \eta, \varphi}(y^*)\|^2.
\]
Thus
\[
\|R_{m}^{H,\eta,\varphi}(x^{*}) - R_{m}^{H,\eta,\varphi}(y^{*})\| \leq \frac{\gamma}{\gamma}||x^{*} - y^{*}||, \quad \forall x^{*}, y^{*} \in X^{*}.
\]

Now, we formulate our main problems.

Let \(N_{i} : X \times X \rightarrow X^{*} \), \(\varphi : X^{*} \rightarrow X^{*} \), \(\eta : X \times X \rightarrow X \), \(g : X \rightarrow X \) be single valued mappings, and \(P_{1}, G_{i}, T_{i} : X \rightarrow CB(X)(i = 1, \cdots, \ell) \) be set valued mappings. Let \(H : X \rightarrow X^{*} \) be a strictly \(\eta \)-monotone mapping and \(M : X \rightarrow 2^{X^{*}} \) be a \((H, \eta, \varphi)\)-monotone mapping. Then the system of nonlinear variational type inclusions is to find \(x_{i} \in X, u_{i} \in T_{i}(x_{i}), v_{i} \in G_{i}(x_{i}), w_{i} \in P_{i}(x_{i}) \) such that

\[
0 \in H(g(x_{1})) - H(g(x_{2})) + \rho_{1}[N_{1}(u_{1}, v_{1}) + M(g(x_{1}), w_{1})],
\]
\[
0 \in H(g(x_{2})) - H(g(x_{3})) + \rho_{2}[N_{2}(u_{2}, v_{2}) + M(g(x_{2}), w_{2})],
\]
\[
\vdots
\]
\[
0 \in H(g(x_{\ell-1})) - H(g(x_{\ell})) + \rho_{\ell-1}[N_{\ell-1}(u_{\ell-1}, v_{\ell-1}) + M(g(x_{\ell-1}), w_{\ell-1})],
\]
\[
(2.1) \quad 0 \in H(g(x_{\ell})) - H(g(x_{1})) + \rho_{\ell}[N_{\ell}(u_{\ell}, v_{\ell}) + M(g(x_{\ell}), w_{\ell})],
\]

where \(\rho_{i} (i = 1, 2, \cdots, \ell) \) is a positive constant.

Remarks 2.13.

(i) We note that if \(i = 1, 2, 3 \), then (2.1) reduces to finding \(x_{i} \in X, u_{i} \in T_{i}(x_{i}), v_{i} \in G_{i}(x_{i}), w_{i} \in P_{i}(x_{i}) \) such that

\[
0 \in H(g(x_{1})) - H(g(x_{2})) + \rho_{1}[N_{1}(u_{1}, v_{1}) + M(g(x_{1}), w_{1})],
\]
\[
0 \in H(g(x_{2})) - H(g(x_{3})) + \rho_{2}[N_{2}(u_{2}, v_{2}) + M(g(x_{2}), w_{2})],
\]
\[
(2.2) \quad 0 \in H(g(x_{3})) - H(g(x_{1})) + \rho_{3}[N_{3}(u_{3}, v_{3}) + M(g(x_{3}), w_{3})],
\]

where \(\rho_{i} (i = 1, 2, 3) \) is a positive constant.

(ii) We note that if \(i = 1, 2 \), then (2.2) reduces to finding \(x_{i} \in X, u_{i} \in T_{i}(x_{i}), v_{i} \in G_{i}(x_{i}), w_{i} \in P_{i}(x_{i}) \) such that

\[
0 \in H(g(x_{1})) - H(g(x_{2})) + \rho_{1}[N_{1}(u_{1}, v_{1}) + M(g(x_{1}), w_{1})],
\]
\[
(2.3) \quad 0 \in H(g(x_{2})) - H(g(x_{1})) + \rho_{2}[N_{2}(u_{2}, v_{2}) + M(g(x_{2}), w_{2})],
\]

where \(\rho_{i} (i = 1, 2) \) is a positive constant.

(iii) We note that if \(i = 1 \), then \(x_{1} = x, u_{1} = u, v_{1} = v, w_{1} = w \) and (2.3) reduces to finding \(x \in X, u \in T(x), v \in G(x), w \in P(x) \) such that

\[
(2.4) \quad 0 \in H(g(x)) - H(g(x^{*})) + \rho[N(u, v) + M(g(x), w)], \quad \forall x^{*} \in X,
\]

where \(\rho \) is a positive constant.
3. Main Results

Theorem 3.1. Let \(N_i : X \times X \to X^* \), \(g : X \to X \), \(\eta : X \times X \to X \) be single valued mappings. Let a single valued mapping \(\varphi_i : X^* \to X^* \) satisfying \(\varphi_i(u + v) = \varphi_i(u) + \varphi_i(v) \) and \(\text{Ker}(\varphi_i) = \{0\} \) (i.e., \(\text{Ker}(\varphi_i) = \{x \in X^* : \varphi_i(x) = 0\} \), \(i = 1, \ldots, \ell \). Let \(M : X \times X \to 2^{X^*} \) be a \((H, \eta, \varphi_i)\)-monotone mapping. Then (\(x_i, u_i, v_i, w_i \)) where \(x_i \in X, u_i \in T_i(x_i), v_i \in G_i(x_i), w_i \in P_i(x_i)(i = 1, \ldots, \ell) \) is a solution of (2.1) if and only if

\[
\begin{align*}
 g(x_1) &= R_{M(\cdot, w_i)}^{H, \eta, \varphi_1}[Hg(x_2) - \rho_1 \varphi_1 \circ N_1(u_1, v_1)], \\
 g(x_2) &= R_{M(\cdot, w_i)}^{H, \eta, \varphi_2}[Hg(x_3) - \rho_2 \varphi_2 \circ N_2(u_2, v_2)], \\
 &\vdots \\
 g(x_{\ell-1}) &= R_{M(\cdot, w_i)}^{H, \eta, \varphi_{\ell-1}}[Hg(x_{\ell}) - \rho_{\ell-1} \varphi_{\ell-1} \circ N_{\ell-1}(u_{\ell-1}, v_{\ell-1})], \\
 g(x_{\ell}) &= R_{M(\cdot, w_i)}^{H, \eta, \varphi_{\ell}}[Hg(x_1) - \rho_{\ell} \varphi_{\ell} \circ N_\ell(u_{\ell}, v_{\ell})],
\end{align*}
\]

where \(\rho_i > 0 (i = 1, \ldots, \ell) \) is a constant and

\[
R_{M(\cdot, w_i)}^{H, \eta, \varphi_i} = [H + \rho_i \varphi_i \circ M(\cdot, w_i)]^{-1}, \quad (i = 1, \ldots, \ell)
\]

is a resolvent operator.

Proof. From the definition of \(R_{M(\cdot, w_i)}^{H, \eta, \varphi_1} \), we have

\[
\begin{align*}
 Hg(x_2) - \rho_1 \varphi_1 \circ N_1(u_1, v_1) &\in [H + \rho_1 \varphi_1 \circ M(\cdot, w_i)]g(x_1), \\
 \Rightarrow Hg(x_2) - \rho_1 \varphi_1 \circ N_1(u_1, v_1) &\in Hg(x_1) + \rho_1 (\varphi_1 \circ M(g(x_1), w_i)), \\
 \Rightarrow 0 &\in Hg(x_1) - Hg(x_2) + \rho_1 \varphi_1 [N_1(u_1, v_1) + M(g(x_1), w_i)].
\end{align*}
\]

Since \(\varphi_1(u_1 + u_2) = \varphi_1(u_1) + \varphi_2(u_2) \) and \(\text{Ker}(\varphi_1) = \{0\} \). Thus

\[
0 \in Hg(x_1) - Hg(x_2) + \rho_1 [N_1(u_1, v_1) + M(g(x_1), w_i)], \quad \rho_1 > 0.
\]

Similarly, for all \(x_i \in X, u_i \in T_i(x_i), v_i \in G_i(x_i), w_i \in P_i(x_i) \),

\[
\begin{align*}
 0 &\in Hg(x_2) - Hg(x_3) + \rho_2 [N_2(v_2, w_2) + M(g(x_2), w_2)], \quad \rho_2 > 0, \\
 &\vdots \\
 0 &\in Hg(x_\ell) - Hg(x_1) + \rho_\ell [N_\ell(v_\ell, w_\ell) + M(g(x_\ell), w_\ell)], \quad \rho_\ell > 0.
\end{align*}
\]

Thus \((x_i, u_i, v_i, w_i) \in X \) is a solution of (2.1).

On the basis of Theorem 3.1., we define the following algorithm:

Algorithm 3.2. Let \(T_i, G_i, P_i : X \to CB(X) \), \(N_i : X \times X \to X^* \), \(\varphi_i : X^* \to X^* \), \(\eta : X \times X \to X \), \(g : X \to X (i = 1, \ldots, \ell) \) be mappings. Let \(H : X \to X^* \) be a strictly \(\eta \)-monotone mapping and \(M : X \to 2^{X^*} \) be a \((H, \eta, \varphi_i)\)-monotone mapping. Then for
any arbitrary chosen \(x_i^0 \in X, u_i^0 \in T_i(x_i^0), v_i^0 \in G_i(x_i^0), w_i^0 \in P_i(x_i^0) \) \((i = 1, \ldots, \ell) \), there exists a point \(x_i^1 \in X \) such that

\[
x_i^1 = x_i^0 - g(x_i^0) + R_{M(x_i^0)}^{H,\eta,\varphi_i} \left[Hg(x_i^0) - \rho_1 \varphi_1 \circ N_1(u_i^0, v_i^0) \right], \rho_1 > 0,
\]

where

\[
g(x_i^0) = R_{M(x_i^0)}^{H,\eta,\varphi_i} \left[Hg(x_i^0) - \rho_2 \varphi_2 \circ N_2(u_i^0, v_i^0) \right], \rho_2 > 0,
\]

\[
\vdots
\]

\[
g(x_i^\ell) = R_{M(x_i^0)}^{H,\eta,\varphi_i} \left[Hg(x_i^0) - \rho_\ell \varphi_\ell \circ N_\ell(u_i^0, v_i^0) \right], \rho_\ell > 0.
\]

By Nadler’s Theorem [29], there exist \(u_i^1 \in T_i(x_i^1), v_i^1 \in G_i(x_i^1), w_i^1 \in P_i(x_i^1) \) such that

\[
\|u_i^1 - u_i^0\| \leq (1 + (1 + 0)^{-1})\delta(T_1(x_i^1), T_i(x_i^0)),
\]

\[
\|v_i^1 - v_i^0\| \leq (1 + (1 + 0)^{-1})\delta(G_1(x_i^1), G_i(x_i^0)),
\]

\[
\|w_i^1 - w_i^0\| \leq (1 + (1 + 0)^{-1})\delta(P_1(x_i^1), P_i(x_i^0)),
\]

\[
\vdots
\]

\[
\|u_i^\ell - u_i^0\| \leq (1 + (1 + 0)^{-1})\delta(T_\ell(x_i^1), T_\ell(x_i^0)),
\]

\[
\|v_i^\ell - v_i^0\| \leq (1 + (1 + 0)^{-1})\delta(G_\ell(x_i^1), G_\ell(x_i^0)),
\]

\[
\|w_i^\ell - w_i^0\| \leq (1 + (1 + 0)^{-1})\delta(P_\ell(x_i^1), P_\ell(x_i^0)).
\]

Similarly, for given \(x_i^1 \in X, u_i^1 \in T_i(x_i^1), v_i^1 \in G_i(x_i^1), w_i^1 \in P_i(x_i^1) \) \((i = 1, \ldots, \ell) \), there exists a point \(x_i^2 \in X \) such that

\[
x_i^2 = x_i^1 - g(x_i^1) + R_{M(x_i^1)}^{H,\eta,\varphi_i} \left[Hg(x_i^1) - \rho_1 \varphi_1 \circ N_1(u_i^1, v_i^1) \right], \rho_1 > 0,
\]

where

\[
g(x_i^1) = R_{M(x_i^1)}^{H,\eta,\varphi_i} \left[Hg(x_i^1) - \rho_2 \varphi_2 \circ N_2(u_i^1, v_i^1) \right], \rho_2 > 0,
\]

\[
\vdots
\]

\[
g(x_i^\ell) = R_{M(x_i^1)}^{H,\eta,\varphi_i} \left[Hg(x_i^1) - \rho_\ell \varphi_\ell \circ N_\ell(u_i^1, v_i^1) \right], \rho_\ell > 0.
\]

Again, from the Nadler’s Theorem [29], there exist \(u_i^2 \in T_i(x_i^2), v_i^2 \in G_i(x_i^2), w_i^2 \in P_i(x_i^2) \) such that

\[
\|u_i^2 - u_i^1\| \leq (1 + (1 + 1)^{-1})\delta(T_i(x_i^2), T_i(x_i^1)),
\]

\[
\|v_i^2 - v_i^1\| \leq (1 + (1 + 1)^{-1})\delta(G_i(x_i^2), G_i(x_i^1)),
\]

\[
\|w_i^2 - w_i^1\| \leq (1 + (1 + 1)^{-1})\delta(P_i(x_i^2), P_i(x_i^1)) \ (i = 1, \ldots, \ell).
\]
We can compute \(\{x_i^n\}, \{u_i^n\}, \{v_i^n\}, \{w_i^n\} \), by induction schemes:

\[
x_i^{n+1} = x_i^n - g(x_i^n) + R_{M, \omega}^{H, n, \varphi_1}(Hg(x_2^n) - \rho_1 \varphi_1 \circ N_1(u_1^n, v_1^n)), \rho_1 > 0,
\]

where

\[
g(x_2^n) = R_{M, \omega}^{H, n, \varphi_2}(Hg(x_3^n) - \rho_2 \varphi_2 \circ N_2(u_2^n, v_2^n)), \rho_2 > 0,
\]

\[
g(x_3^n) = R_{M, \omega}^{H, n, \varphi_3}(Hg(x_1^n) - \rho_3 \varphi_3 \circ N_3(u_3^n, v_3^n)), \rho_3 > 0,
\]

and

\[
u_i^n \in T_i(x_i^n) : \|u_i^{n+1} - u_i^n\| \leq (1 + (1 + n)^{-1})\delta_i(T_i(x_i^{n+1}), T_i(x_i^n)),
\]

\[
v_i^n \in G_i(x_i^n) : \|v_i^{n+1} - v_i^n\| \leq (1 + (1 + n)^{-1})\delta_i(G_i(x_i^{n+1}), G_i(x_i^n)),
\]

\[
w_i^n \in P_i(x_i^n) : \|w_i^{n+1} - w_i^n\| \leq (1 + (1 + n)^{-1})\delta_i(P_i(x_i^{n+1}), P_i(x_i^n)) (i = 1, \ldots, \ell).
\]

If \(i = 1, 2, 3 \), then Algorithm 3.2 reduces to three step iterative algorithm, see [3, 4, 5], which are as following:

Algorithm 3.3. For any arbitrary chosen \(x_1^0 \in X, u_1^0 \in T_1(x_1^0), v_1^0 \in G_1(x_1^0), w_1^0 \in P_1(x_1^0) \), compute \(\{x_1^n\} \) by iterative schemes:

\[
x_1^{n+1} = x_1^n - g(x_1^n) + R_{M, \omega}^{H, n, \varphi_1}(Hg(x_2^n) - \rho_1 \varphi_1 \circ N_1(u_1^n, v_1^n)), \rho_1 > 0,
\]

where

\[
g(x_2^n) = R_{M, \omega}^{H, n, \varphi_2}(Hg(x_3^n) - \rho_2 \varphi_2 \circ N_2(u_2^n, v_2^n)), \rho_2 > 0,
\]

\[
g(x_3^n) = R_{M, \omega}^{H, n, \varphi_3}(Hg(x_1^n) - \rho_3 \varphi_3 \circ N_3(u_3^n, v_3^n)), \rho_3 > 0,
\]

and

\[
u_1^n \in T_1(x_1^n) : \|u_1^{n+1} - u_1^n\| \leq (1 + (1 + n)^{-1})\delta_i(T_1(x_1^{n+1}), T_1(x_1^n)),
\]

\[
v_1^n \in G_1(x_1^n) : \|v_1^{n+1} - v_1^n\| \leq (1 + (1 + n)^{-1})\delta_i(G_1(x_1^{n+1}), G_1(x_1^n)),
\]

\[
w_1^n \in P_1(x_1^n) : \|w_1^{n+1} - w_1^n\| \leq (1 + (1 + n)^{-1})\delta_i(P_1(x_1^{n+1}), P_1(x_1^n)) (i = 1, 2, 3).
\]

We note that the Algorithm 3.3 gives the approximate solution to the variational inclusions (2.2).

If \(i = 1, 2 \), then Algorithm 3.2, reduces to the Ishikawa type iterative algorithm, see [1, 7, 17, 20], which are as following:

Algorithm 3.4. For any arbitrary chosen \(x_1^0 \in X, u_1^0 \in T_1(x_1^0), v_1^0 \in G_1(x_1^0), w_1^0 \in P_1(x_1^0) \), compute \(\{x_1^n\} \) by iterative schemes:

\[
x_1^{n+1} = x_1^n - g(x_1^n) + R_{M, \omega}^{H, n, \varphi_1}(Hg(x_2^n) - \rho_1 \varphi_1 \circ N_1(u_1^n, v_1^n)), \rho_1 > 0
\]
where
\[g(x_2^n) = R_{M(x, w^n)}^H\varphi_2[Hg(x_1^n) - \rho_2\varphi_2 \circ N_2(u_2^n, v_2^n)], \rho_2 > 0 \]
and
\[
\begin{align*}
&u^n_i \in T_i(x^n_1): \|u^n_i + u^n_i\| \leq (1 + (1 + n)^{-1})\delta(T_i(x^{n+1}_1), T_i(x^n_1)), \\
v^n_i \in G_i(x^n_1): \|v^n_i + v^n_i\| \leq (1 + (1 + n)^{-1})\delta(G_i(x^{n+1}_1), G_i(x^n_1)), \\
w^n_i \in P_i(x^n_1): \|w^n_i + w^n_i\| \leq (1 + (1 + n)^{-1})\delta(P_i(x^{n+1}_1), P_i(x^n_1)) (i = \Gamma, 2).
\end{align*}
\]

We note that the Algorithm 3.4 gives the approximate solution to the variational inclusions (2.3).

If \(i = 1 \), then \(x_1 = x \) and we have the following Mann type iterative schemes:

Algorithm 3.5. For any arbitrary chosen \(x^0 \in X, u^0 \in T(x^0), v^0 \in G(x^0), w^0 \in P(x^0) \), compute \(\{x^n\} \) by iterative schemes
\[
(x^{n+1}) = x^n - g(x^n) + R_{M(x^n, w^n)}^H[Hg(x^n) - \rho\varphi \circ N(u^n, v^n)], \rho > 0
\]
and
\[
\begin{align*}
&u^n \in T(x^n): \|u^n + u^n\| \leq (1 + (1 + n)^{-1})\delta(T(x^{n+1}), T(x^n)), \\
v^n \in G(x^n): \|v^n + v^n\| \leq (1 + (1 + n)^{-1})\delta(G(x^{n+1}), G(x^n)), \\
w^n \in P(x^n): \|w^n + w^n\| \leq (1 + (1 + n)^{-1})\delta(P(x^{n+1}), P(x^n)).
\end{align*}
\]

We note that the Algorithm 3.5 gives the approximate solution to the variational inclusions (2.4).

Now, we prove that following theorem which ensures the convergence of the iterative sequences generated by Algorithm 3.2.

Theorem 3.6. Let \(X \) be a uniformly smooth Banach space with modulus of smoothness \(\rho_X(t) \leq c t^2 \) for some \(c > 0 \) and \(X^* \) its dual space. Let \(g: X \to X \) be a \(\kappa \)-strongly accretive and \(\delta \)-Lipschitz continuous, \(H: X \to X^* \) be a \(\gamma \)-strongly \(\eta \)-monotone and \(s \)-Lipschitz continuous with respect to \(g \) and \(N_i: X \times X \to X^* \) be \((r_i, p_i) \)-Lipschitz continuous with respect to first and second argument, respectively. Let \(T_i, G_i, P_i: X \to C(B(X^*)) \) be a \((\zeta_{T_i}, \zeta_{G_i}, \zeta_{P_i}) \)-Lipschitz continuous for \((i = 1, \ldots, \ell) \) respectively. Let \(\varphi_i: X^* \to X^* \) be a single valued mapping satisfying \(\varphi_i(u + v) = \varphi_i(u) + \varphi_i(v) \) and \(\text{Ker}(\varphi_i) = \{0\} \) and \(\varphi_i: X^* \to X^* \) be a \(\theta_i \)-Lipschitz continuous with respect to \(N_i, (i = 1, \ldots, \ell) \), respectively. Let \(\eta: X \times X \to X \) be a \(\tau \)-Lipschitz continuous mapping and \(M: X \times X \to 2^{X^*} \) be a \((H, \eta, \varphi_i) \)-monotone mapping where \((i = 1, \ldots, \ell) \). Assume that
\[
\|R_{M(x^{n-1}, w_{n-1}^i)}^H - R_{M(x, w_{n-1}^i)}^H\| \leq \xi_i\|w^n_i - w_i^{n-1}\|
\]
where \(\xi_i \) is a positive constant for \((i = 1, \ldots, \ell) \) and
\[
0 < \Omega + \frac{\tau}{\gamma} \left\{ \frac{\tau^{\ell-1} \delta^{\ell-1} \rho \ell \theta (r_i \zeta_{T_i} + p_i \zeta_{G_i})}{\gamma^{\ell-1} \kappa^{\ell-1}} + \frac{\tau^{\ell-2} \delta^{\ell-1} \rho \ell \theta (r_i \zeta_{T_i} + p_i \zeta_{G_i})}{\gamma^{\ell-2} \kappa^{\ell-2}} + \ldots \right\}
\]
Since g converge strongly to the unique solutions. Then the sequences $\{x^n_i\}, \{u^n_i\}, \{v^n_i\}, \{w^n_i\} (i = 1, \ldots, \ell)$ generated by Algorithm 3.2 converge strongly to the unique solutions (x_i, u_i, v_i, w_i) respectively, where $x_i \in X, u_i \in T_i(x_i), v_i \in G_i(x_i), w_i \in P_i(x_i)$ is a solution of (2.1).

Proof. From Algorithm 3.2 and Theorem 2.12, we have

$$\|x^{n+1}_1 - x^n_1\| = \|x^n_1 - g(x^n_1) + R_{M, \phi_1}^H[Hg(x^n_2) - \rho_1 \varphi_1 \circ N_1(u^n_i, v^n_i)]
- x^{n-1}_1 + g(x^{n-1}_1) - R_{M, \phi_1}^H[Hg(x^{n-1}_2) - \rho_1 \varphi_1 \circ N_1(u^{n-1}_1, v^{n-1}_1)]\|
\leq \|x^n_1 - x^{n-1}_1 - (g(x^n_1) - g(x^{n-1}_1))\| + \|R_{M, \phi_1}^H[Hg(x^n_2) - \rho_1 \varphi_1 \circ N_1(u^n_i, v^n_i)]
- R_{M, \phi_1}^H[Hg(x^{n-1}_2) - \rho_1 \varphi_1 \circ N_1(u^{n-1}_1, v^{n-1}_1)]\| + \|R_{M, \phi_1}^H[Hg(x^{n-1}_2) - \rho_1 \varphi_1 \circ N_1(u^{n-1}_1, v^{n-1}_1)]\|
\leq \|x^n_1 - x^{n-1}_1 - (g(x^n_1) - g(x^{n-1}_1))\| + \frac{\tau}{\gamma} \|Hg(x^n_2) - Hg(x^{n-1}_2)\|
+ \rho_1 \varphi_1 \circ N_1(u^{n-1}_1, v^{n-1}_1)\| + \xi_1 \|w^n_1 - w^{n-1}_1\|\|
\leq \|x^n_1 - x^{n-1}_1 - (g(x^n_1) - g(x^{n-1}_1))\| + \frac{\tau \rho_1}{\gamma} \|\varphi_1 \circ N_1(u^n_i, v^n_i) - \varphi_1 \circ N_1(u^{n-1}_1, v^{n-1}_1)\| + \xi_1 \|w^n_1 - w^{n-1}_1\|.

Since g is a κ-strongly accretive and δ-Lipschitz continuous and from Lemma 2.5, we have

$$\|x^n_1 - x^{n-1}_1 - (g(x^n_1) - g(x^{n-1}_1))\|^2 = \|x^n_1 - x^{n-1}_1\|^2
+ 2\langle j(x^n_1 - x^{n-1}_1 - g(x^n_1)), -(g(x^n_1) - g(x^{n-1}_1))\rangle
\leq \|x^n_1 - x^{n-1}_1\|^2 - 2\langle j(x^n_1 - x^{n-1}_1), g(x^n_1) - g(x^{n-1}_1)\rangle
+ 2\langle j(x^n_1 - x^{n-1}_1 - g(x^n_1)), g(x^n_1) - g(x^{n-1}_1)\rangle - \langle j(x^n_1 - x^{n-1}_1), -(g(x^n_1) - g(x^{n-1}_1))\rangle$$
Again, since H and g are Lipschitz continuous, we have
\[
\|Hg(x^n_1) - Hg(x^{n-1}_1)\| \leq s\delta\|x^n_1 - x^{n-1}_1\|,
\]
\[
\|Hg(x^n_2) - Hg(x^{n-1}_2)\| \leq s\delta\|x^n_2 - x^{n-1}_2\|,
\]
\[
\vdots
\]
\[
\|Hg(x^n_\ell) - Hg(x^{n-1}_\ell)\| \leq s\delta\|x^n_\ell - x^{n-1}_\ell\|.
\]

(3.10)

Since φ_1 is a θ_1-Lipschitz continuous with respect to $N_1(\cdot, \cdot)$ and $N_1(\cdot, \cdot)$ is a (r_1, p_1)-Lipschitz continuous with respect to first and second argument, respectively. T_1 and G_1 are ζ_{T_1}, δ-Lipschitz continuous and ζ_{G_1}, δ-Lipschitz continuous respectively, we have
\[
\|\varphi_1 \circ N_1(u^n_1, v^n_1) - \varphi_1 \circ N_1(u^{n-1}_1, v^{n-1}_1)\| \leq \theta_1\|N_1(u^n_1, v^n_1) - N_1(u^{n-1}_1, v^{n-1}_1)\|
\]
\[
\leq \theta_1\|N_1(u^n_1, v^n_1) - N_1(u^{n-1}_1, v^{n-1}_1) + N_1(u^{n-1}_1, v^n_1) - N_1(u^{n-1}_1, v^{n-1}_1)\|
\]
\[
\leq \theta_1\|N_1(u^n_1, v^n_1) - N_1(u^{n-1}_1, v^n_1)\| + \theta_1\|N_1(u^{n-1}_1, v^n_1) - N_1(u^{n-1}_1, v^{n-1}_1)\|
\]
\[
\leq \theta_1 r_1\|u^n_1 - u^{n-1}_1\| + \theta_1 p_1\|v^n_1 - v^{n-1}_1\|
\]
\[
\leq \theta_1 r_1 (1 + (1 + n)^{-1})\delta(T_1(x^n_1), T_1(x^{n-1}_1))
\]
\[
+ \theta_1 p_1 (1 + (1 + n)^{-1})\delta(G_1(x^n_1), G_1(x^{n-1}_1))
\]
\[
(3.11)
\]
\[
\leq (1 + (1 + n)^{-1})\theta_1 (r_1 \zeta_{T_1} + p_1 \zeta_{G_1})\|x^n_1 - x^{n-1}_1\|.
\]

Again, P_1 is a ζ_{P_1}, δ-Lipschitz continuous, we have
\[
\|w^n_1 - w^{n-1}_1\| \leq (1 + (1 + n)^{-1})\delta(P_1(x^n_1), P_1(x^{n-1}_1))
\]
\[
(3.12)
\]
\[
\leq (1 + (1 + n)^{-1})\zeta_{P_1}\|x^n_1 - x^{n-1}_1\|.
\]

From (3.8)–(3.12), we have
\[
\|x_{n+1}^1 - x^n_1\| \leq \{\sqrt{1 - 2\kappa + 64c\delta^2} + (1 + (1 + n)^{-1})(\tau\rho_1\theta_1 (r_1 \zeta_{T_1} + p_1 \zeta_{G_1}) + \xi_1 \zeta_{P_1})\}	imes
\]
\[
\|x^n_1 - x^{n-1}_1\| + \frac{x\delta\xi_1}{\gamma}\|x^n_2 - x^{n-1}_2\|.
\]

(3.13)

Again, since $g : X \to X$ is a κ-strongly accretive and δ-Lipschitz continuous, we have
\[
\|g(x^n_2) - g(x^{n-1}_2)\|\|x^n_2 - x^{n-1}_2\| \geq \langle g(x^n_2) - g(x^{n-1}_2), j(x^n_2 - x^{n-1}_2)\rangle
\]
\[
\geq \kappa\|x^n_2 - x^{n-1}_2\|^2.
\]

(3.14)
Therefore
\[
\|x^n_2 - x^{n-1}_2\| \leq \frac{1}{\kappa} \|g(x^n_2) - g(x^{n-1}_2)\|
\]
\[
\leq \frac{1}{\kappa} \|R^H_{\eta,\phi} \|Hg(x^n_2) - \rho_2 \varphi_2 \circ N_2(u^n_2, v^n_2)\| - R^H_{\eta,\phi} \|Hg(x^{n-1}_2)\|
\leq \frac{1}{\kappa} \left\{ \|R^H_{\eta,\phi} [Hg(x^n_2) - \rho_2 \varphi_2 \circ N_2(u^n_2, v^n_2)] - R^H_{\eta,\phi} [Hg(x^{n-1}_2)]\|
\right.
\]
\[
+ \|R^H_{\eta,\phi} [Hg(x^n_2) - \rho_2 \varphi_2 \circ N_2(u^n_2, v^n_2)]\|
\]
\[
\leq \frac{\tau}{\kappa \gamma} \|Hg(x^n_3) - Hg(x^{n-1}_3)\| + \rho_2 \|\varphi_2 \circ N_2(u^n_2, v^n_2) - \varphi_2 \circ N_2(u^{n-1}_2, v^{n-1}_2)\|
\]
\[
+ \frac{\xi_2}{\kappa} \|u^n_2 - u^{n-1}_2\|
\]
\[
\leq \frac{\tau}{\kappa \gamma} \|Hg(x^n_3) - Hg(x^{n-1}_3)\| + \frac{\tau \rho_2}{\kappa \gamma} \|\varphi_2 \circ N_2(u^n_2, v^n_2) - \varphi_2 \circ N_2(u^{n-1}_2, v^{n-1}_2)\|
\]

(3.15)
\[
+ \frac{\xi_2}{\kappa} \|u^n_2 - u^{n-1}_2\|
\]

where \(t = Hg(x^n_3) - \rho_2 \varphi_2 \circ N_2(u^n_2, v^n_2) \).

Since \(\varphi_2 \) is a \(\theta_2 \)-Lipschitz continuous with respect to \(N_2(\cdot, \cdot) \) and \(N_2(\cdot, \cdot) \) is a \((r_2, p_2) \)-Lipschitz continuous with respect to first and second argument, respectively, and \(T_2, G_2 \) are \(\zeta_{r_2}\)-Lipschitz continuous and \(\zeta_{G_2}\)-Lipschitz continuous, we have
\[
\|\varphi_2 \circ N_2(u^n_2, v^n_2) - \varphi_2 \circ N_2(u^{n-1}_2, v^{n-1}_2)\| \leq \theta_2 \|N_2(u^n_2, v^n_2) - N_2(u^{n-1}_2, v^{n-1}_2)\|
\]

(3.16)
\[
\leq (1 + (1 + n)^{-1}) \theta_2 (r_2 \zeta_{T_2} + p_2 \zeta_{G_2}) \|x^n_1 - x^{n-1}_1\|
\]

Again, \(P_2 \) is a \(\zeta_{P_2}\)-Lipschitz continuous, we have
\[
\|u^n_2 - u^{n-1}_2\| \leq (1 + (1 + n)^{-1}) \zeta(P_2(x^n_1), P_2(x^{n-1}_1))
\]

(3.17)
\[
\leq (1 + (1 + n)^{-1}) \zeta_{P_2} \|x^n_1 - x^{n-1}_1\|
\]

Again, from (3.10), (3.15)–(3.17), we have
\[
\|x^n_2 - x^{n-1}_2\| \leq \frac{\tau \zeta_2}{\kappa \gamma} \|x^n_3 - x^{n-1}_3\|
\]

(3.18)
\[
+ (1 + (1 + n)^{-1}) \left\{ \frac{\tau \rho_2 (r_2 \zeta_{T_2} + p_2 \zeta_{G_2})}{\kappa \gamma} + \frac{\xi_2 \zeta_{P_2}}{\kappa} \right\} \|x^n_1 - x^{n-1}_1\|
\]

Similarly, we have
\[
\|x^n_3 - x^{n-1}_3\| \leq \frac{1}{\kappa} \|g(x^n_3) - g(x^{n-1}_3)\| \leq \frac{\tau}{\kappa \gamma} \|Hg(x^n_3) - Hg(x^{n-1}_3)\|
\]

(3.19)
\[
+ \frac{\tau \rho_3}{\kappa \gamma} \|\varphi_3 \circ N_3(u^n_3, v^n_3) - \varphi_3 \circ N_3(u^{n-1}_3, v^{n-1}_3)\| \leq \frac{\xi_3}{\kappa} \|u^n_3 - u^{n-1}_3\|
\]
Since φ_3 is a θ_3-Lipschitz continuous with respect to $N_3(\cdot, \cdot)$ and $N_3(\cdot, \cdot)$ is a (r_3, p_3)-Lipschitz continuous with respect to first and second argument, respectively, and T_3, G_3 are $\zeta_{T_3, \zeta}$-\mathcal{S}-Lipschitz continuous and $\zeta_{G_3, \zeta}$-\mathcal{S}-Lipschitz continuous, we have
\[
\|\varphi_3 \circ N_3(u^n_3, v^n_3) - \varphi_3 \circ N_3(u^n_3, v^n_3)\|
\leq (1 + (1 + n)^{-1})\theta_3(r_3\zeta_{T_3} + p_3\zeta_{G_3})\|x_1^n - x_1^{n-1}\|. \tag{3.20}
\]
Again, P_3 is a $\zeta_{P_3, \zeta}$-\mathcal{S}-Lipschitz continuous, we have
\[
\|w^n_3 - w^{n-1}_3\|
\leq (1 + (1 + n)^{-1})\delta(P_3(x^n_3), P_3(x^{n-1}_3))
\leq (1 + (1 + n)^{-1})\zeta_{P_3}\|x^n_3 - x^{n-1}_3\|. \tag{3.21}
\]
Again from (3.10), (3.18)–(3.21), we have
\[
\|x^n_3 - x^{n-1}_3\|
\leq \frac{\tau s_3}{\kappa\gamma} \|x^n_3 - x^{n-1}_3\|
+ (1 + (1 + n)^{-1})\left\{ \frac{\tau p_3\theta_3(r_3\zeta_{T_3} + p_3\zeta_{G_3})}{\kappa\gamma} + \frac{\xi_3\zeta_{P_3}}{\kappa} \right\}\|x^n_3 - x^{n-1}_3\|. \tag{3.22}
\]
Continuing this process, we have
\[
\|x^n_{\ell-1} - x^{n-1}_{\ell-1}\|
\leq \frac{\tau s_3}{\kappa\gamma} \|x^n_{\ell} - x^{n-1}_{\ell}\|
+ (1 + (1 + n)^{-1})\left\{ \frac{\tau p_{\ell-1}\theta_{\ell-1}(r_{\ell-1}\zeta_{T_{\ell-1}} + p_{\ell-1}\zeta_{G_{\ell-1}})}{\kappa\gamma}
+ \frac{\xi_{\ell-1}\zeta_{P_{\ell-1}}}{\kappa} \right\}\|x^n_{\ell} - x^{n-1}_{\ell}\|. \tag{3.23}
\]
Again,
\[
\|x^n_{\ell} - x^{n-1}_{\ell}\|
\leq \frac{1}{\kappa}\|g(x^n_{\ell}) - g(x^{n-1}_{\ell})\|
\leq \frac{1}{\kappa}\|R_{M(\cdot, \cdot)}^{H, n, \varphi_{\ell}}[Hg(x^n_1) - \rho_{\ell}\varphi_{\ell} \circ N_1(u^n_1, v^n_1)]
- R_{M(\cdot, \cdot)}^{H, n, \varphi_{\ell-1}}[Hg(x^{n-1}_1) - \rho_{\ell-1}\varphi_{\ell-1} \circ N_1(u^{n-1}_1, v^{n-1}_1)]\|
\leq \frac{\tau}{\kappa\gamma}\|Hg(x^n_1) - Hg(x^{n-1}_1)\|
+ \frac{\tau p_{\ell}}{\kappa\gamma}\|\varphi_{\ell} \circ N_1(u^n_1, v^n_1) - \varphi_{\ell} \circ N_1(u^{n-1}_1, v^{n-1}_1)\|
\leq \frac{\tau}{\kappa\gamma}\|Hg(x^n_1) - Hg(x^{n-1}_1)\|
+ \frac{\xi_{\ell}}{\kappa}\|w^n_{\ell} - w^{n-1}_{\ell}\|. \tag{3.24}
\]
Since φ_ℓ is a θ_ℓ-Lipschitz continuous with respect to $N_\ell(\cdot, \cdot)$ and $N_\ell(\cdot, \cdot)$ is a (r_ℓ, p_ℓ)-Lipschitz continuous with respect to first and second argument, respectively, and T_ℓ, G_ℓ are $\zeta_{T_\ell, \zeta}$-\mathcal{S}-Lipschitz continuous and $\zeta_{G_\ell, \zeta}$-\mathcal{S}-Lipschitz continuous, we have
\[
\|\varphi_\ell \circ N_\ell(u^n_\ell, v^n_\ell) - \varphi_\ell \circ N_\ell(u^{n-1}_\ell, v^{n-1}_\ell)\| \leq \theta_\ell\|N_\ell(u^n_\ell, v^n_\ell) - N_\ell(u^{n-1}_\ell, v^{n-1}_\ell)\|.
\]
Again, \(P_\ell \) is a \(\zeta P_\ell \)-Lipschitz continuous, we have
\[
\| w_\ell^n - w_\ell^{n-1} \| \leq (1 + (1 + n)^{-1}) \delta (P_\ell(x_\ell^n), P_\ell(x_\ell^{n-1}))
\]
\[
\leq (1 + (1 + n)^{-1}) \zeta P_\ell \| x_\ell^n - x_\ell^{n-1} \|. \tag{3.26}
\]
Again from (3.10), (3.23)-(3.26), we have
\[
\| x_\ell^n - x_\ell^{n-1} \| \leq \frac{\tau s \delta}{k \gamma} \| x_\ell^n - x_\ell^{n-1} \| + \frac{\tau \rho \ell}{k \gamma} (1 + (1 + n)^{-1}) \theta_\ell (r_\ell \zeta T_\ell + p_\ell \zeta G_\ell) \| x_\ell^n - x_\ell^{n-1} \|
\]
\[
+ \frac{\xi \zeta P_\ell}{k} (1 + (1 + n)^{-1}) \| x_\ell^n - x_\ell^{n-1} \| \tag{3.27}
\]
Now,
\[
\| x_{\ell-1}^n - x_{\ell-1}^{n-1} \| \leq \left[\frac{\tau^2 s^2 \delta^2}{k^2 \gamma^2} (1 + (1 + n)^{-1}) \left(\frac{\tau^2 s^2 \delta^2}{k^2 \gamma^2} \right) \right] \| x_\ell^n - x_\ell^{n-1} \|
\]
\[
+ (1 + (1 + n)^{-1}) \frac{\tau \rho \ell}{k \gamma} \left(r_{\ell-1} \zeta T_{\ell-1} + p_{\ell-1} \zeta G_{\ell-1} \right) \| x_\ell^n - x_\ell^{n-1} \| \tag{3.28}
\]
\[
\| x_2^n - x_2^{n-1} \| \leq \left[\frac{\tau^2 s^2 \delta^2}{k^2 \gamma^2} \| x_\ell^n - x_\ell^{n-1} \| \right] \| x_\ell^n - x_\ell^{n-1} \|
\]
\[
+ \left(\frac{\tau^2 s^2 \delta^2}{k^2 \gamma^2} \right) \left(r_2 \zeta T_2 + p_2 \zeta G_2 \right) \| x_\ell^n - x_\ell^{n-1} \| \tag{3.29}
\]
Again,
\[
\| x_1^{n+1} - x_1^n \| \leq \mu_n \| x_1^n - x_1^{n-1} \| , \tag{3.30}
\]
where
\[
\mu_n = \Omega_n + (1 + (1 + n)^{-1}) \left\{ \frac{\tau \rho_1 \ell_1 (r_1 \zeta T_1 + p_1 \zeta G_1)}{\gamma} + \left(\frac{\tau^2 s \delta \ell_1}{k \ell_1 \gamma^2} \right) \right\} \| x_\ell^n - x_\ell^{n-1} \|.
\]
\[
\Omega_n = \sqrt{1 - 2 \kappa + 64 \ell_1 \delta^2} \frac{\tau^2 s \delta}{k \ell_1 \gamma^2} + (1 + (1 + n)^{-1}) \xi \zeta P_\ell ,
\]
\[
\ell_1 = \frac{1}{\sqrt{1 - 2 \kappa + 64 \ell_1 \delta^2} \frac{\tau^2 s \delta}{k \ell_1 \gamma^2} + (1 + (1 + n)^{-1}) \xi \zeta P_\ell }.
\]

Approximation Solvability for a System of Nonlinear Variational Type Inclusions 117
as \(n \to \infty \), we see that \(\mu_n \to \mu \), where

\[
\begin{align*}
\mu &= \Omega + \left\{ \frac{\tau^2 s^{t-1} \delta^{-1} \rho_2 \theta_3 (r_1 \zeta T_1 + p_1 \zeta G_1)}{\gamma \kappa^{t-1}} + \frac{\tau^2 s^{t-1} \delta^{-1} \xi_1 \zeta P_1}{\kappa^{t-1}} + \cdots \right. \\
&\quad + \left. \frac{\tau^2 s^{t-1} \delta^{-1} \rho_2 (r_2 \zeta T_2 + p_2 \zeta G_2)}{\kappa^{t-1}} + \frac{\xi_2 \zeta P_2 \tau s \delta}{\kappa \gamma} + \frac{\tau \rho_2 \theta_3 (r_1 \zeta T_1 + p_1 \zeta G_1)}{\gamma} \right\}, \\
\Omega &= \sqrt{1 - 2\kappa + 64c \delta^2 + \xi_1 \zeta P_1 + \frac{\tau^2 s \delta}{\kappa^{t-1}}}.
\end{align*}
\]

Since \(0 < \mu < 1 \), by condition (3.7) and so \(0 < \mu_n < 1 \) where \(n \) is sufficiently large. It follows from (3.30) that \(\{x_n\} \) is a Cauchy sequence in \(X \). Similarly, it follows from (3.18) and (3.30) that \(\{x_n^\ast\} \) is Cauchy sequence in \(X \). Hence there exists \(x_i \in X, u_i \in T_i(x_1), v_i \in G_i(x_1), w_i \in P_i(x_1) \) such that \(u_i^0 \to u_i, v_i^0 \to v_i \) and \(w_i^0 \to w_i(i = 1, \cdots, \ell) \) as \(n \to \infty \). Next, we show that \(u_i \in T_i(x_1), v_i \in G_i(x_1) \) and \(w_i \in P_i(x_1) \), respectively. Since \(u_i^0 \in T_i(x_1) \), we have

\[
d(u_1, T_1(x_1)) \leq \|u_1 - u_1^0\| + d(u_1^0, T_1(x_1)) \\
\quad \leq \|u_1 - u_1^0\| + \delta(T_1(x_1^0), T_1(x_1)) \\
(3.31) \quad \leq \|u_1 - u_1^0\| + \xi T_1 \|x_1^0 - x_1\| \to 0, \quad {\text{as}} \quad n \to \infty.
\]

Hence \(u_1 \in T_1(x_1) \), since \(T_1(x_1) \in CB(X) \). Similarly, we can show that \(v_1 \in G_1(x_1) \), \(w_1 \in P_1(x_1) \). Thus, it follows from Algorithm 3.2 that \(x_i \in X, u_i \in T_i(x_1), v_i \in G_i(x_1), w_i \in P_i(x_1) \) satisfy (3.1) and hence from Theorem 3.1, it follows that \((x_i, u_i, v_i, w_i) \) where \(x_i \in X, u_i \in T_i(x_1), v_i \in G_i(x_1), w_i \in P_i(x_1) \) is a solution of (2.1). Now we show that \((x_i, u_i, v_i, w_i) \) is unique, let \((x_i^*, u_i^*, v_i^*, w_i^*) \) where \(x_i^* \in X, u_i^* \in T_i(x_i^*), v_i^* \in G_i(x_i^*), w_i \in P_i(x_i^*) \) be another solution of (2.1), then from Theorem 3.1 implies that

\[
g(x_i^*) = R_{\lambda i}^{\mu, \varphi_1}(Hg(x_i^*) - \rho_1 \varphi_1 \circ N_1(u_i^*, v_i^*)), \rho_1 > 0,
\]

where

\[
g(x_2^*) = R_{\lambda i}^{\mu, \varphi_2}(Hg(x_2^*) - \rho_2 \varphi_2 \circ N_2(u_2^*, v_2^*)), \rho_2 > 0,
\]

\[
\vdots
\]

\[
g(x_{\ell}^*) = R_{\lambda i}^{\mu, \varphi_\ell}(Hg(x_{\ell}^*) - \rho_\ell \varphi_\ell \circ N_\ell(u_{\ell}^*, v_{\ell}^*)), \rho_\ell > 0.
\]

From (3.32) and similar argument given as above, we have

\[
\|x_1 - x_i^*\| = \|x_1 - g(x_1) + R_{\lambda i}^{\mu, \varphi_1}(Hg(x_2) - \rho_1 \varphi_1 \circ N_1(u_1, v_1)) - x_1^* + g(x_1^*) - R_{\lambda i}^{\mu, \varphi_1}(Hg(x_2^*) - \rho_1 \varphi_1 \circ N_1(u_1^*, v_1^*))\| \\
\quad \leq \|x_1 - x_i^*\|.
\]
Since $0 < \mu < 1$, thus $x_1 = x^*_1$. Similarly $x_2 = x^*_2, \ldots, x_l = x^*_l$. Therefore $(x^*_1, u^*_1, v^*_1, w^*_1)$, where $x_i \in X$, $u_i \in T_i(x_1)$, $v_i \in G_i(x_1)$, $w_i \in P_i(x_1)$ is an unique solution of (2.1).

Corollary 3.7. Let X be a uniformly smooth Banach space with modulus of smoothness $\rho_X(t) \leq ct^2$ for some $c > 0$, and X^* be the dual space of X. Let $g : X \to X$ be a κ-strongly accretive and δ-Lipschitz continuous, $H : X \to X^*$ be a γ-strongly η-monotone and s-Lipschitz continuous with respect to g, and $N_i : X \times X \to X^*$ be a (r_i, p_i)-Lipschitz continuous with respect to first and second argument, respectively. Let $T_i, G_i, P_i : X \to CB(X^*)$ be ζ_{T_i}-δ_i-Lipschitz continuous, ζ_{G_i}-δ_i-Lipschitz continuous, ζ_{P_i}-δ_i-Lipschitz continuous ($i = 1, 2, 3$), respectively. Let $\varphi_i : X^* \to X^*$ be a single valued mapping satisfying $\varphi_i(u + v) = \varphi_i(u) + \varphi_i(v)$ and $\text{Ker}(\varphi_i) = \{0\}$ and $\varphi_i : X^* \to X^*$ be a θ_i-Lipschitz continuous with respect to $N_i(i = 1, 2, 3)$ respectively. Let $\eta : X \times X \to X$ be a τ-Lipschitz continuous mapping and $M : X \times X \to 2^{X^*}$ be a (H, η, φ_i)-monotone mapping. Assume that (3.6) holds for $(i = 1, 2, 3)$ and

$$0 < \Omega + \frac{\tau^2 s^2 \delta^2 \rho_3 \theta_3 (r_3 \zeta_{T_3} + p_3 \zeta_{G_3})}{\kappa^2 \gamma^2} + \frac{\tau s \delta \rho_2 \theta_2 (r_2 \zeta_{T_2} + p_2 \zeta_{G_2})}{\kappa \gamma} + \frac{\tau s^2 \delta^2 \xi_{\delta} \zeta_{P_3}}{\kappa^2 \gamma} + \frac{s \delta \xi_2 \zeta_{P_3}}{\kappa} + \rho_1 \theta_1 (r_1 \zeta_{T_1} + p_1 \zeta_{G_1}) < 1,$$

$$+ \frac{\tau^2 s^2 \delta^2 \rho_3 \theta_3 (r_3 \zeta_{T_3} + p_3 \zeta_{G_3})}{\kappa^2 \gamma^2} + \frac{\tau s \delta \rho_2 \theta_2 (r_2 \zeta_{T_2} + p_2 \zeta_{G_2})}{\kappa \gamma} + \frac{\tau s^2 \delta^2 \xi_{\delta} \zeta_{P_3}}{\kappa^2 \gamma} + \frac{s \delta \xi_2 \zeta_{P_3}}{\kappa} + \rho_1 \theta_1 (r_1 \zeta_{T_1} + p_1 \zeta_{G_1}) > 0.$$

(3.33)
$$\Omega = \sqrt{1 - 2\kappa + 64s \delta^2 + \frac{\tau^3 s^3 \delta^3 \xi_{\delta}}{\kappa^2 \gamma^3}} + \xi_1 \zeta_{P_3} > 0.$$

Then the sequences $\{x^n_i\}, \{u^n_i\}, \{v^n_i\}, \{w^n_i\}(i = 1, 2, 3)$ generated by Algorithm 3.3 converge strongly to the unique solutions (x_1, u_1, v_1, w_1) respectively, where $x_1 \in X, u_i \in T_i(x_1), v_i \in G_i(x_1), w_i \in P_i(x_1)$ is a solution of (2.2).

Corollary 3.8. Let X be a uniformly smooth Banach space with modulus of smoothness $\rho_X(t) \leq ct^2$ for some $c > 0$, and X^* be the dual space of X. Let $g : X \to X$ be a κ-strongly accretive and δ-Lipschitz continuous, $H : X \to X^*$ be a γ-strongly η-monotone and s-Lipschitz continuous with respect to g, and $N_i : X \times X \to X^*$ be a (r_i, p_i)-Lipschitz continuous with respect to first and second argument respectively. Let $T_i, G_i, P_i : X \to CB(X^*)$ be ζ_{T_i}-δ_i-Lipschitz continuous, ζ_{G_i}-δ_i-Lipschitz continuous, ζ_{P_i}-δ_i-Lipschitz continuous $(i = 1, 2)$, respectively. Let $\varphi_i : X^* \to X^*$ be a single valued mapping satisfying $\varphi_i(u + v) = \varphi_i(u) + \varphi_i(v)$ and $\text{Ker}(\varphi_i) = \{0\}$ and $\varphi_i : X^* \to X^*$ be a θ_i-Lipschitz continuous with respect to $N_i(i = 1, 2)$ respectively.
Let $\eta : X \times X \to X$ be a τ-Lipschitz continuous mapping and $M : X \times X \to 2^{X^*}$ be a (H, η, φ_i)-monotone mapping. Assume that (3.6) holds for $(i = 1, 2)$ and

\[0 < \Omega + \frac{\tau}{\gamma} \{ p_1 \theta_1(r_1 \zeta_{T_1} + p_1 \zeta_{G_1}) + \frac{\tau s \delta \rho_2 \theta_2(r_2 \zeta_{T_2} + p_2 \zeta_{G_2})}{\kappa \gamma} + \frac{\xi_2 s \delta \zeta_{G_2}}{\kappa} \} < 1,\]

\[\rho_1 \theta_1(r_1 \zeta_{T_1} + p_1 \zeta_{G_1}) + \frac{\tau s \delta \rho_2 \theta_2(r_2 \zeta_{T_2} + p_2 \zeta_{G_2})}{\kappa \gamma} + \frac{\xi_2 s \delta \zeta_{G_2}}{\kappa} > 0\]

(3.34)

\[\Omega = \sqrt{1 - 2\kappa + 64\kappa^2 \sigma^2 + \xi_1 \zeta_{P_1} + \frac{\tau^2 s^2 \sigma^2}{\kappa^2}} > 0.\]

Then the sequences $\{x^n\}, \{v^n\}, \{w^n\}$ generated by Algorithm 3.4 converge strongly to the unique solutions $(x_i, u_i, v_i, w_i)(i = 1, 2)$ respectively, where $x_i \in X, u_i \in T_i(x_i), v_i \in G_i(x_i), w_i \in P_i(x_i)$ is a solution of (2.3).

Corollary 3.9. Let X be a uniformly smooth Banach space with modulus of smoothness $\rho_X(t) \leq ct^2$ for some $c > 0$, and X^* be the dual space of X. Let $g : X \to X$ be a κ-strongly accretive and δ-Lipschitz continuous, $H : X \to X^*$ be a γ-strongly η-monotone and s-Lipschitz continuous with respect to g, and $N : X \times X \to X^*$ be a (r, p)-Lipschitz continuous with respect to first and second argument, respectively. Let $T, G, P : X \to CB(X^*)$ be ζ_T-δ_T-Lipschitz continuous, ζ_G-δ_G-Lipschitz continuous, ζ_P-δ_P-Lipschitz continuous, respectively. Let $\varphi : X^* \to X^*$ be a single valued mapping satisfying $\varphi(u + v) = \varphi(u) + \varphi(v)$ and Ker(φ) = $\{0\}$ where $\varphi : X^* \to X^*$ be a θ-Lipschitz continuous with respect to N respectively. Let $\eta : X \times X \to X$ be a τ-Lipschitz continuous mapping and $M : X \times X \to 2^{X^*}$ be a (H, η, φ)-monotone mapping. Assume that

\[\|R_{M(X, w^n)}^H(x) - R_{M(X, w^n-1)}^H(x)\| \leq \xi\|w^n - w^{n-1}\|\]

and

\[0 < \Omega + \frac{\tau}{\gamma} \{ s \delta + \rho \theta(r \zeta_{T} + p \zeta_{G}) \} < 1,\]

\[s \delta + \rho \theta(r \zeta_{T} + p \zeta_{G}) > 0, \quad \Omega = \sqrt{1 - 2\kappa + 64\kappa^2 \sigma^2 + \xi \zeta_{P}} > 0.\]

(3.36)

Then the sequences $\{x^n\}, \{v^n\}, \{w^n\}$ generated by Algorithm 3.5 converge strongly to the unique solutions (x, u, v, w) respectively where $x \in X, u \in T(x), v \in G(x), w \in P(x)$ is a solution of (2.4).

Acknowledgements. The author wishes to express his gratitude to the Editor-in-Chief, the two anonymous referees for their detailed comments and useful suggestions that allowed to improve significantly the presentation of this paper.
References

