Synthesis and Properties of Two Dimensional Doped Transition Metal Dichalcogenides

  • Yoon, Aram (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Zonghoon (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2017.03.27
  • Accepted : 2017.03.27
  • Published : 2017.03.30


Since graphene was discovered in 2004, two-dimensional (2D) materials have been actively studied. Especially, 2D transition metal dichalcogenides (TMDs), such as $MoS_2$ and $WS_2$, have been the subject of significant research because of their exceptional optical, electrical, magnetic, catalytic, and morphological properties. Therefore, these materials are expected to be used in a variety of applications. Furthermore, tuning the properties of TMDs is essential to improve their performance and expand their applications. This review classifies the various doping methods of 2D TMDs, and it summarizes how the dopants interact with the materials and how the performance of the materials improves depending on the synthesis methods and the species of the dopants.



Supported by : National Research Foundation of Korea (NRF)


  1. Al-Dulaimi N, Lewis D J, Zhong X L, Malik M A, and O'Brien P (2016) Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J. Mater. Chem. C 4, 2312-2318.
  2. Ataca C, Sahin H, and Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983-8999.
  3. Binnewies M, Glaum R, Schmidt M, and Schmidt P (2013) Chemical vapor transport reactions-a historical review. ZAAC 639, 219-229.
  4. Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, and Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594-1601.
  5. Gao J, Kim Y D, Liang L, Idrobo J C, Chow P, Tan J, Li B, Li L, Sumpter B G, and Lu T M (2016) Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28, 9735-9743.
  6. Hayashi Y (2016) Pot economy and one-pot synthesis. Chem. Sci. 7, 866-880.
  7. Hwang N M (2016). Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes (Vol. 60) (Springer, Seoul).
  8. Lewis D J, Tedstone A A, Zhong X L, Lewis E A, Rooney A, Savjani N, Brent J R, Haigh S J, Burke M G, and Muryn C A (2015) Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 27, 1367-1374.
  9. Lin Y C, Dumcenco D O, Komsa H P, Niimi Y, Krasheninnikov A V, Huang Y S, and Suenaga K (2014) Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Adv. Mater. 26, 2857-2861.
  10. Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, and Shan J (2013) Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207-211.
  11. Mouri S, Miyauchi Y, and Matsuda K (2013) Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944-5948.
  12. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306, 666-669.
  13. Park J H and Sudarshan T S (2001) Chemical Vapor Deposition (Vol. 2) (ASM International, Illinois).
  14. Qin S, Lei W, Liu D, and Chen Y (2014) In-situ and tunable nitrogendoping of MoS2 nanosheets. Sci. Rep. 4, 7582.
  15. Sim D M, Kim M, Yim S, Choi M J, Choi J, Yoo S, and Jung Y S (2015) Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 9, 12115-12123.
  16. Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y, Ko C, Jang C, and Sun Y (2014) Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976-6982.
  17. Tedstone A A, Lewis D J, Hao R, Mao S M, Bellon P, Averback R S, Warrens C P, West K R, Howard P, and Gaemers S (2015) Mechanical properties of molybdenum disulfide and the effect of doping: an in situ TEM study. ACS Appl. Mater. Interfaces 7, 20829-20834.
  18. Tedstone A A, Lewis D J, and O'Brien P (2016) Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 28, 1965-1974.
  19. Wang H, Yuan H, Hong S S, Li Y, and Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664-2680.
  20. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712.
  21. Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P, Tieckelmann R, Tsai W, and Hobbs C (2014) Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275-6280.
  22. Yu J, Lee C H, Bouilly D, Han M, Kim P, Steigerwald M L, Roy X, and Nuckolls C (2016) Patterning superatom dopants on transition metal dichalcogenides. Nano Lett. 16, 3385-3389.
  23. Zhang K, Feng S, Wang J, Azcatl A, Lu N, Addou R, Wang N, Zhou C, Lerach J, and Bojan V (2015) Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett. 15, 6586-6591.

Cited by

  1. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors vol.9, pp.4, 2017,
  2. Progress in Contact, Doping and Mobility Engineering of MoS2: An Atomically Thin 2D Semiconductor vol.8, pp.8, 2018,
  3. for Electrocatalysis vol.24, pp.13, 2018,
  4. Novel structured transition metal dichalcogenide nanosheets vol.47, pp.9, 2018,