DOI QR코드

DOI QR Code

Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet

  • Bhatti, M.M. (Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University) ;
  • Abbas, T. (Department of Mathematics, Quaid-I-Azam University) ;
  • Rashidi, M.M. (Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University)
  • Received : 2016.04.20
  • Accepted : 2016.06.16
  • Published : 2016.09.30

Abstract

In this article, entropy generation on MHD Williamson nanofluid over a porous shrinking sheet has been analyzed. Nonlinear thermal radiation and chemical reaction effects are also taken into account with the help of energy and concentration equation. The fluid is electrically conducting by an external applied magnetic field while the induced magnetic field is assumed to be negligible due to small magnetic Reynolds number. The governing equations are first converted into the dimensionless expression with the help of similarity transformation variables. The solution of the highly nonlinear coupled ordinary differential equation has been obtained with the combination of Successive linearization method (SLM) and Chebyshev spectral collocation method. Influence of all the emerging parameters on entropy profile, temperature profile and concentration profile are plotted and discussed. Nusselt number and Sherwood number are also computed and analyzed. It is observed that entropy profile increases for all the physical parameters. Moreover, it is found that when the fluid depicts non-Newtonian (Williamson fluid) behavior then it causes reduction in the velocity of fluid, however, non-Newtonian behavior enhances the temperature and nanoparticle concentration profile.

Keywords

nanofluid;entropy generation;thermal radiation;shrinking sheet;SLM

References

  1. S.U.S. Choi, ASME-Publications-Fed. 231, 99 (1995).
  2. Y. Xuan, and Q. Li, J. Heat Trans. 125, 151 (2003). https://doi.org/10.1115/1.1532008
  3. J. Buongiorno, J. Heat Trans. 128, 240 (2006). https://doi.org/10.1115/1.2150834
  4. W. A. Khan and I. Pop, Int. J. Heat Mass Transf. 53, 2477 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
  5. M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, Int. J. Heat Mass Transf. 54, 5588 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.021
  6. M. Hassan, R. Ellahi, and A. Zeeshan, Math. Sci. Lett. 5, 1 (2016). https://doi.org/10.18576/msl/050101
  7. R. Ellahi, M. Hassan, and A. Zeeshan, Nanotech. IEEE Transac. 14, 726 (2015). https://doi.org/10.1109/TNANO.2015.2435899
  8. M. M. Bhatti and M. M. Rashidi, J. Mol. Liq. 221, 567 (2016). https://doi.org/10.1016/j.molliq.2016.05.049
  9. M. Sheikholeslami, K. Vajravelu, and M. M. Rashidi, Int. J. Heat Mass Trans. 92, 339 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.066
  10. A. Zeeshan, A. Majeed, and R. Ellahi, J. Mol. Liq. 215, 549 (2016). https://doi.org/10.1016/j.molliq.2015.12.110
  11. A. Bejan, CRC Press (1996).
  12. R. Ellahi, M. Hassan, and A. Zeeshan, Int. J. Heat Mass Trans. 81, 449 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.041
  13. A. Zeeshan, M. Hassan, R. Ellahi, and M. Nawaz, P. I. Mech. Eng. E-J Pro. 0954408916646139 (2016).
  14. H. F. Oztop and K. Al-Salem, Renew. Sust. Energ. Rev. 16, 911 (2012). https://doi.org/10.1016/j.rser.2011.09.012
  15. M. M. Rashidi, S. Abelman, and N. F. Mehr, Int. J. Heat Mass Transf. 62, 515 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004
  16. M. H. Abolbashari, N. Freidoonimehr, F. Nazari, and M. M. Rashidi, Powder Technol. 267, 256 (2014). https://doi.org/10.1016/j.powtec.2014.07.028
  17. M. H. Abolbashari, N. Freidoonimehr, F. Nazari, and M. M. Rashidi, Adv. Powder Technol. 26, 542 (2015). https://doi.org/10.1016/j.apt.2015.01.003
  18. M. Sheikholeslami and D. D. Ganji, Physica A. 417, 273 (2015). https://doi.org/10.1016/j.physa.2014.09.053
  19. M. Sheikholeslami and D. D. Ganji, Energy 75, 400 (2014). https://doi.org/10.1016/j.energy.2014.07.089
  20. N. S. Akbar, Entropy. 17, 1411 (2015). https://doi.org/10.3390/e17031411
  21. M. Sheikholeslami, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Trans. 96, 513 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.059
  22. M. Sheikholeslami and S. Abelman, Nanotech. IEEE Transac. 14, 561 (2015). https://doi.org/10.1109/TNANO.2015.2416318
  23. M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, J. Mol. Liq. 212, 117 (2015). https://doi.org/10.1016/j.molliq.2015.07.077
  24. M. Sheikholeslami, R. Ellahi, M. Hassan, and S. Soleimani, Int. J. Numer. Method. H. 24, 1906 (2014). https://doi.org/10.1108/HFF-07-2013-0225
  25. Z. Abbas, M. Sheikh, and S. S. Motsa, Energy 95, 12 (2016). https://doi.org/10.1016/j.energy.2015.11.039
  26. J. A. Khan, M. Mustafa, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Transf. 86, 158 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.078
  27. M. M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami, and M. A. Hossain, Adv. Mech. Eng. 6, 735939 (2014). https://doi.org/10.1155/2014/735939
  28. M. M. Rashidi, N. Vishnu Ganesh, A. K. Abdul Hakeem, and B. Ganga, J. Mol. Liq. 198, 234 (2014). https://doi.org/10.1016/j.molliq.2014.06.037
  29. M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, Comput. Methods in Appl. Mech. Eng. 294, 299 (2015). https://doi.org/10.1016/j.cma.2015.06.010
  30. M. S. Kandelousi, Eur. Phy. J. Pl. 129, 1 (2014). https://doi.org/10.1140/epjp/i2014-14001-y
  31. A. Zeeshan and A. Majeed, J. Magn. 21, 153 (2016). https://doi.org/10.4283/JMAG.2016.21.1.153
  32. M. Sheikholeslami, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Transf. 96, 513 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.059
  33. M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, J. Taiwan Inst. Chem. Eng. 47, 6 (2015). https://doi.org/10.1016/j.jtice.2014.09.026
  34. M. Sheikholeslami, M. M. Rashidi, T. Hayat, and D. D. Ganji, J. Mol. Liq. 218, 393 (2016). https://doi.org/10.1016/j.molliq.2016.02.093
  35. M. S. Kandelousi, Phys. Lett. A. 378, 3331 (2014). https://doi.org/10.1016/j.physleta.2014.09.046
  36. M. Sheikholeslami, J. Braz. Soc. Mech. Sci. Eng. 37, 1623 (2015). https://doi.org/10.1007/s40430-014-0242-z
  37. M. M. Bhatti, T. Abbas, M. M. Rashidi, and M. E. S. Ali, Entropy. 18, 200 (2016). https://doi.org/10.3390/e18060200
  38. J. Qing, M. M. Bhatti, M. A. Abbas, M. M. Rashidi, and M. E. S. Ali, Entropy. 18, 123 (2016). https://doi.org/10.3390/e18040123
  39. M. M. Bhatti, T. Abbas, M. M. Rashidi, M. E. S. Ali, and Z. Yang, Entropy. 18, 224 (2016). https://doi.org/10.3390/e18060224
  40. M. Sheikholeslami, H. R. Ashorynejad, and P. Rana, J. Mol. Liq. 214, 86 (2016). https://doi.org/10.1016/j.molliq.2015.11.052
  41. M. M. Bhatti, A. Shahid, and M. M. Rashidi, Alexandria Eng. J. 55, 51 (2016). https://doi.org/10.1016/j.aej.2016.01.015

Cited by

  1. Effect of Slip Conditions and Entropy Generation Analysis with an Effective Prandtl Number Model on a Nanofluid Flow through a Stretching Sheet vol.19, pp.8, 2017, https://doi.org/10.3390/e19080414
  2. Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver vol.27, pp.10, 2017, https://doi.org/10.1108/HFF-10-2016-0419
  3. Computational study of non-Newtonian Eyring–Powell fluid from a vertical porous plate with biot number effects vol.39, pp.7, 2017, https://doi.org/10.1007/s40430-017-0761-5
  4. Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet vol.91, pp.10, 2017, https://doi.org/10.1007/s12648-017-1022-2
  5. Numerical Analysis of Energy Storage Systems Using Phase-Change Materials with Nanoparticles pp.1533-6808, 2017, https://doi.org/10.2514/1.T5252
  6. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid pp.1588-2926, 2017, https://doi.org/10.1007/s10973-017-6918-8
  7. O nanofluid pp.2041-3009, 2017, https://doi.org/10.1177/0954408917732759
  8. -water nanofluid flow in a non-Darcy porous media vol.28, pp.3, 2018, https://doi.org/10.1108/HFF-04-2017-0160
  9. Vibration Analysis of Rectangular Plates Resting on Four Rigid Supports pp.1708-5284, 2018, https://doi.org/10.1108/WJE-07-2017-0189
  10. MHD flow of a kinetic postulate of liquids inaugurated fluid under thermal radiation effects pp.1208-6045, 2018, https://doi.org/10.1139/cjp-2018-0102
  11. On three-dimensional MHD Oldroyd-B fluid flow with nonlinear thermal radiation and homogeneous–heterogeneous reaction vol.40, pp.8, 2018, https://doi.org/10.1007/s40430-018-1297-z
  12. Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides vol.21, pp.2, 2019, https://doi.org/10.3390/e21020116