Bionic Study of Variable Viscosity on MHD Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel

  • Khan, Ambreen A. (Department of Mathematics & Statistics, FBAS, IIUI) ;
  • Muhammad, Saima (Department of Mathematics & Statistics, FBAS, IIUI) ;
  • Ellahi, R. (Department of Mathematics & Statistics, FBAS, IIUI) ;
  • Zia, Q.M. Zaigham (Department of Mathematics, COMSATS Institute of Information Technology Chak Shazad Islamabad)
  • Received : 2016.02.07
  • Accepted : 2016.05.09
  • Published : 2016.06.30


In this paper, the peristaltic flow of Psedoplastic fluid with variable viscosity in an asymmetric channel is examined. The bionic effects by means of magnetohydrodynamics (MHD) are taken into account. The assumptions of long wave length and low Reynolds number are taken into account. The basic equations governing the flow are first reduced to a set of ordinary differential equation by using appropriate transformation for variables and then solve by using perturbation method. The effect of physical parameters on the pressure rise, velocity and pressure gradient are illustrated graphically. The trapping phenomenon is analyzed through stream lines. A suitable comparison has also been made as a limiting case of the considered problem.


Peristaltic flow;Pseudoplastic fluid;variable viscosity;MHD;asymmetric channel;analytical solutions


  1. N. S. Akbar, Zeitschrift fur Naturforschung A 70, 745 (2015).
  2. R. Ellahi, A. Riaz, and S. Nadeem, Journal of Mechanics in Medicine and Biology 14, 1450002 (2014).
  3. A Riaz, S. Nadeem, R. Ellahi, and A. Zeeshan, Applied Bionics and Biomechanics 11, 81 (2014).
  4. N. S. Akbar, Applicable Analysis 94, 1420 (2015).
  5. N. S. Akbar, J. Comput. Theor. Nanos. 12, 1546 (2015).
  6. N. S. Akbar, J. Comput. Theor. Nanos. 12, 1553 (2015).
  7. S. Nadeem and Noreen Sher Akbar, Computer Methods in Biomechanics and Biomedical Engineering 14, 987 (2011).
  8. S. Srinivas and M. Kothandapani, International Commun. in Heat and Mass Transfer. 20, 514 (2008).
  9. S. Srinivas and R. Gayathri, Appl. Math. Comput. 215, 185 (2009).
  10. Kh. S. Mekheimer, S. Z. A. Husseny, and Y. Abd Elmaboud, Numer. Methods Partial Differ. Equat. 26, 747 (2010).
  11. V. K. Sud and G. S. Sekhon, Mishra, Bull. Math. Biol. 39, 385 (1977).
  12. A. Yldrm and S. A. Sezer, Mathematical and Computer Modelling 52, 618 (2010).
  13. S. Srinivas and M. Kothandapania, Appl. Math. Comput. 213, 197 (2009).
  14. M. Sheikholeslami, M. G. Bandpy, and H. R. Ashorynejad, Physica A: Statistical Mechanics and its Applications 432, 58 (2015).
  15. A. Ishak, K. Jafar, R. Nazar, and I. Pop, Physica A: Statistical Mechanics and its Applications 388, 3377 (2009).
  16. F. Aman, A. Ishak, and I. Pop, International Communications in Heat and Mass Transfer 47, 68 (2013).
  17. M. I. A. Othman, Mechanics and Mechanical Engineerig 7, 41 (2004).
  18. Y. Abd Elmaboud, Commun. Nonlinear Sci. Num. Sim. 17, 685 (2012).
  19. Kh.S. Mekheimer, Phys. Lett. A 372, 4271 (2008).
  20. S. Akram and S. Nadeem, J. Magn. Magn. Mater. 328, 11 (2013).
  21. Kh. S. Mekheimer and Y. A. Elmaboud, Phys. Lett. A 372, 1657 (2008).
  22. A. El. Hakeem, A. El. Naby, El. A. E. M. Misiery, and I. El. Shamy, Appl. Math. Comput. 158, 497 (2004).
  23. A. El. Hakeem, A. El. Naby, El. A. E. M. Misiery, and I. El. Shamy, J. Phys. A 36, 8535 (2003).
  24. R. Ellahi, Appl. Math. Model 37, 1451 (2013).

Cited by

  1. Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating pp.1433-3058, 2016,
  2. Flow due to a convectively heated cylinder with nonlinear thermal radiation pp.1433-3058, 2016,
  3. Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification vol.132, pp.12, 2017,
  4. Melting heat transfer in the MHD flow of a third-grade fluid over a variable-thickness surface vol.132, pp.6, 2017,
  5. Numerical study of non-Newtonian fluid flow over an exponentially stretching surface: an optimal HAM validation vol.39, pp.5, 2017,
  6. Influence of heat transfer on the peristaltic transport of Walters B fluid in an inclined annulus vol.39, pp.7, 2017,
  7. Hydromagnetic Blood Flow of Sisko Fluid in a Non-uniform Channel Induced by Peristaltic Wave vol.68, pp.1, 2017,
  8. MHD free convective heat transfer in a Walter’s liquid-B fluid past a convectively heated stretching sheet with partial wall slip vol.40, pp.2, 2018,
  9. Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar–Newtonian fluids in a porous medium vol.96, pp.9, 2018,
  10. Free and confined Brownian motion in viscoelastic Stokes–Oldroyd B fluids vol.30, pp.34, 2018,
  11. Effectiveness of magnetic field on the flow of Jeffrey fluid in an annulus with rotating concentric cylinders vol.40, pp.6, 2018,
  12. Optimal tracking control of flow velocity in a one-dimensional magnetohydrodynamic flow pp.1029-0273, 2018,
  13. Multiple slip effects on magnetic-Carreau fluid in a suspension of gyrotactic microorganisms over a slendering sheet pp.2041-3009, 2018,
  14. The effects of thermal radiation and chemical reaction on MHD flow of a casson fluid over and exponentially inclined stretching surface vol.1000, pp.1742-6596, 2018,