A History of the Common Logarithmic Table with Proportional Parts

상용로그표의 비례부분에 대한 역사적 고찰

  • Kim, Tae Soo (Dept. of School of Liberal Arts, Seoul National Univ. of Science & Technology)
  • Received : 2014.09.16
  • Accepted : 2014.12.02
  • Published : 2014.12.31


In school mathematics, the logarithmic function is defined as the inverse function of an exponential function. And the natural logarithm is defined by the integral of the fractional function 1/x. But historically, Napier had already used the concept of logarithm in 1614 before the use of exponential function or integral. The calculation of the logarithm was a hard work. So mathematicians with arithmetic ability made the tables of values of logarithms and people used the tables for the estimation of data. In this paper, we first take a look at the mathematicians and mathematical principles related to the appearance and the developments of the logarithmic tables. And then we deal with the confusions between mathematicians, raised by the estimation data which were known as proportional parts or mean differences in common logarithmic tables.


Logarithms;Table of Common Logarithms;Proportional Part


Supported by : 서울과학기술대학교


  1. Henry Briggs, Arithmetica logarithmica, London: William Jones, 1624.
  2. Dr. C. Bruhns, A new manual of logarithms, 1889.
  3. Francois Callet, Tables portatives de logarithms, 1795.
  4. Cho C. S., The Analysis of the Way of Teaching and Learning Logarithms with a Historical Background in High School Mathematics, J. Korea Soc. Math Ed Ser. E: Communications of Mathematical Education 25(3) (2011), 567-575. 조정수, 학교수학 관점에서 살펴본 로그의 역사적 배경과 교수-학습 방법에 대한 고찰. 한국수학교육학회지 시리즈 E '수학교육 논문집' 제25집 제3호, 2011, 567-575.
  5. Choi Y. J., Haebyub Feel Mathematics I, Chunjae Education Inc, 2002, 462-463. 최용준, 해법FEEL수학 수학 I, (주) 천재교육, 2002, 462-463.
  6. Herbert Bristol Dwight, Tables of Integrals and other Mathematical Data, The Macmillan Company, 1957.
  7. Richard Farley, Tables of six-figure logarithms, 1859.
  8. William Gardiner, Tables of Logarithms, 1770.
  9. E. W. Hobson, John Napier and the invention of logarithms, Cambridge, 1614. The University Press, 1914.
  10. Hong S. D., Standard procedure of mathematics I, Seongjisa, 2002, 594-595. 홍성대, 수학의 정석 수학 I. 성지사, 2002, 594-595.
  11. Charles Hutton, Mathematical tables(2ed), 1794.
  12. Kim B. Y., Kim S. Y., The Operational Approach and Structural Approach to the Mathematical Concepts-Focusing on exponential function and logarithmin function, J. Korea Soc. Math Ed Ser. E: Communications of Mathematical Education 21(3) (2007), 499-514. 김부윤, 김소영, 수학적 개념에 대한 조작적 접근과 구조적 접근-지수함수와 로그함수 중심으로-, 한국수학교육학회지 시리즈 E '수학교육 논문집' 21(3) (2007), 499-514.
  13. Kim S. H. et al, Highschool Mathematics I, Gyoakssa Inc, 2010, 196-197. 김수환외 13인, 고등학교 수학 I, (주) 교학사, 2010, 196-197.
  14. Lee D. W., Highschool Mathematics I, Beommunsa, 2010, 245-246. 이동원 외 6인, 수학 I 익힘책, 법문사, 2010, 245-246.
  15. Lee J. Y. et al, Highschool Mathematics I, Chunjae Education Inc, 2010, 276-277. 이준열 외 9인, 수학 I 익힘책, (주) 천재교육, 2010, 276-277.
  16. Michael A. Lexa, Remembering John Napier and His Logarithms, 2013, 1-13. (검색일 2014.7.25.).
  17. Miller and Powell, The Cambridge Elementary Mathematical Tables, Cambridge University Press, 1980.
  18. Ministry of Education, Science and Technology, The principle and manual of a course of study: Mathematics(2011-361) 62, 2009. 교육과학기술부, 교육과정 원문 및 해설서 수학과 교육과정 (교육과학기술부 고시 제2011-361호) 62, 2009.
  19. Ministry of Education & Human Resources Development, The principle and manual of a course of study 6th: Mathematics 73, 1992. 교육인적자원부 교육과정 원문 및 해설서 6차 개정 고등학교 수학과 해설서, 73, 1992.
  20. Friedrich Wilhelm von Oppel, Tafeln derer Logarithmorum von die Zahlen, 1752.
  21. Gaspard de Prony, Tables du Cadastre, 1796.
  22. Denis Roegel, A reconstruction of the tables of Briggs' Arithmetica logarithmica(1624). Technical report, LORIA, Nancy, 2010.
  23. Denis Roegel, Introduction to Chinese and Japanese tables of logarithms, with a review of secondary sources. Technical report, LORIA, Nancy, 2010.
  24. Denis Roegel, Napier's ideal construction of the logarithms, (검색일 2014.7.20.).
  25. Edward Sang, A new table of seven-place logarithms of all numbers from 20,000 to 200,000, 1871.
  26. Schaums Mathematical Handbook of Formulas and Tables (1968), 202-203, (검색일 2014.8.5.).
  27. (검색일 2014.7.21.).
  28. (검색일 2014.7.28.).
  29. (검색일 2014.8.5.).