Control Effect of Temperature and Humidity by Ventilation Fan Operation Methods in Wintering Honey Bee House

Lee, Jong Won, Hyun Woo Lee*, Suk Gun Lee, Lan Shu Jin¹, and Kwang Soo Choi²
Dept. of Agricultural Eng., Kyungpook National University, Daegu 702-701, Korea
¹Shenyang Agricultural University, Shenyang, China
²Dept. of Animal Eng., Kyungpook National University, Daegu 702-701, Korea

Abstract. This study was conducted to establish the ventilation fan operation schedule to be able to provide satisfactory environment for colonies in the wintering honey bee house. The simulation and practical measuring test were conducted to verify the applicability of an existing simulation program to the calculation of inside thermal environment condition of the house, and the environment control performance was compared between the two types of fan operation schedule to find the proper schedule. It was concluded that the program could be used to design the materials of the enclosure and the fan operation schedule and decide the number of accommodation hives. Inside temperature of bee house controlled by the fan operation schedule B was lower than the schedule A under the similar high outside temperature condition. In the presence of the high outside temperature condition, inside air temperature of bee house could be decreased by changing fan operation schedule A to schedule B. The humidity variation in bee house controlled by the fan operation schedule B was smaller than that by schedule A. These results indicated that the schedule B was superior in the aspect of the environment control performance.

Key words : ventilation performance, simulation, experiment

*Corresponding author

서 언

꿀벌의 활동처리는 빨래의 벌꿀 생산량과 양봉가의 소득에 결정적인 영향을 주기 때문에 양봉기술의 과학화 및 생태화에 있어서 큰 비중을 차지하고 있으며 내외에 막론하고 관심이 높아지고 있는 실정이다. 특히, 국내 양봉의 경우 5월중에 개화하는 아카시아 꽃에서 채꿀이 대부분 이루어지기 때문에 활동 벌의 배출물 및 꿀벌의 감염은 양봉가의 소득에 많은 영향을 미친다. 최근에는 수입 봄꿀수준의 증가와 가격상승으로 인하여 활동기간 중 활동적인 활동처리 기술의 개발이 연중 더 요구되고 있는 실정이다(Yu, 1995a).

봉군의 활동은 실외활동과 실내활동으로 구분할 수 있으며, 외기조절에 기여되는 실외활동은 포장작업에

요하는 피드백 노동력, 보온제의 재료로 인한 파손

이나 환기불량, 활동기간 중 벌꿀내부의 실온은 습도

변화 등 많은 문제점을 갖고 있다(Dyson와 More, 1960;

Furgala, 1975). 최근 주요 양봉가에서는 봄봄기의 단순

전일향 기계화를 통하여 양봉작가용 수확된 봄군의 봄

군을 관리할 수 있도록 양봉에서 소요되는 노동력을 줄

감하고 있는 추세이다(Furgala와 McCutcheon, 1993).

꿀벌은 활동시 대기온이 14°C 이하로 내려가면 봄

꿀을(蜂蜜)를 형성하며, 봄꿀은 수축과 평창을 통하여 봄

꿀 포장은을 항상 6°C~8°C 정도로 일정하게 유

지한다(Farrar, 1951; Furgala와 McCutcheon, 1993; Yu, 1995a). 활동기간 중 기온이 급격하여 봄의 내

부에 발생된 봄꿀이 수축과 평창을 반복하여 활동적량

의 소비가 증가하게 되며, 수온온도가 상하게 하강하면
본문은 다음과 수축하여 마치로부터 멀어지게 되어 글씨의 길이가 줄어드는 효과를 주었다(Farrar, 1963; Yiu, 1995).

Lee 등(1998a)은 경북 영주지역에 양봉사를 건설하여 실험을 수행한 결과, 양봉사 내부의 비도와 냉난방 설비 없이 환기기를 사용하여 콜레스틱 작동방식을 대체로 만족시킬 수 있는 결과를 얻었다. 그러나 의식은 15°C 이상인 고온기에는 양봉사 내부온도가 15°C까지 다소 높아 상승하는 경향이 있는 것을 확인하고 고온을 억제할 수 있는 환기방식 개선안을 제시한 바 있다. 이와 관련하여 Lee 등(1998b)은 국내 기후특성을 고려한 양봉사 설계를 위하여 양봉사 내부환경 해석 프로그램을 개발하여 시뮬레이션한 결과, 기존의 환기방식 작동방식에 비하여 2.8°C까지 운동을 억제할 수 있는 새로운 환기방식 작동방식을 제시하였다.

따라서, 본 연구에서는 양봉사 내부환경을 보다 효율적으로 억제할 수 있는 환기방식 작동방식을 구현하기 위하여 시뮬레이션을 통해 얻어진 환기방식 작동방식에 대한 연구결과를 양봉사에 직접 적용하여 실험을 실시하였으며, 양봉사 내부의 온도 및 습도변화에 대한 시뮬레이션 결과와 실험결과를 비교 분석하여 양봉사 설계시 양봉사 내부온도의 해석 프로그램의 적용성을 검토하고, 실험결과를 바탕으로 양봉사 작동방식별 양봉사 내부환경의 조절 성능을 분석하였다.

제료 및 방법

1. 양봉사의 크기 및 환경조건

양봉사의 내부크기는 4.2m(폭)×7.2m(길이)×2.88m(높이)이며 양봉사의 벽체 및 지붕은 두께가 100mm 인 샌드위치 패널로 우레탄 폴(열전량 6.1m·2·C·W⁻¹)으로 마무리하였다. 그리고, 바닥면은 20cm 두께의 콘크리트로 되어 있으며, 실내구에는 보온처리를 하였고 환기구에는 차량설치를 하였다(Lee 등, 1998a).

콜럼의 환경은 영농기 품종은 황금미원은 온도, 습도, 공기조절, 풍, 소음, 건강 등이며 이들 중 가장 중요한 요인은 온도의 습도이다. 콜럼의 환경에 필요한 환경온도는 3~5°C이며 현재온도는 2~6°C이다. 옥정 상태습도범위는 50~75%로 추천되고 있으나 상태습도가 30~45%인 경우에는 별 문제로 없는 것으로 나타났다(Fingler와 Small, 1982).

2. 지정 범위수 및 온 습도 제한

발생한 개량 최소 0.3~0.45m³의 공간이 필요하였다(Yiu, 1995b), 발생한 개량 여유 공간이 많아지면 공기유동이 원활해지므로 양봉사 내부에 120개(.launch) 0.8m³의 복도가 저장되어 월등기간 중 환기방 통로에 따른 양봉사 내부의 온-습도 변화를 비교 분석하였다. 온-습도 변화는 양봉사 내부의 온-습도센서(HOBO)를 각각 2개씩 설치하여 측정하였다.

3. 양봉사 온난제 해석 프로그램

Lee 등(1998b)에 의해 개발된 양봉사 열환경 해석 프로그램은 양봉사의 규모 및 구조체, 내부공간수, 환기방, 의식 등 양봉사 구조체에 따른 양봉사 내부의 도화면을 예측하고 수 있다. 따라서 개발된 작동방식, 즉 환기방면에 따른 양봉사 내부의 온도에 대한 시뮬레이션 결과와 실험결과를 비교 분석하였다.

4. 환기방 작동방식

환기방 작동방식 A는 Lee 등(1998a)의 실험에서 사용했던 방식이며, Table 1과 같이 양봉사 내부온도를 기준으로 환기방을 작동하는 방식으로 양봉사 내부 온도가 6°C보다 높을 경우에는 연속 작동하여 최대 환기가 이루어지게 하고, 양봉사 내부온도가 6°C보다 낮을 경우에는 3분 작동하고 27분 정지하여 최소환기가 이루어지도록 하였다.

Fingler와 Small(1982)의 제안에 따르면 저온용에 필요한 양봉사의 최소환기가량은 0.25~1.5V·m⁻¹·h⁻¹·°C⁻¹이기 때문에 발등 120개를 저장하는 경우의 최소환기가량은 108m³·h⁻¹·°C⁻¹이다.

<table>
<thead>
<tr>
<th>Table 1. Fan operation methods for ventilation in bee house.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan operation method</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

2T: Inside temperature of bee house, 3T: Outside temperature.
Table 2. The simulation results to decide the optimum setting temperature for fan operation in bee house

<table>
<thead>
<tr>
<th>Setting temperature (℃)</th>
<th>Predicted inside temperature (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outside</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

이상한도를 위한 최소한기량은 월동을 양봉사 수분간식(이영 주, 1998년)을 이용하여 계산한 202.3 m² h⁻¹로 나타났다. 따라서 최소한기량은 월동에 응용하여 222 m² h⁻¹로 결정하였다.

환기팬의 처음차원을 결정하기 위하여 의기온은 -5.0~15.0℃(평균 3.7℃) 범위로 밀도 설정의 기온을 8 ~10℃ 범위에서 1℃씩 증가시키고, 설정내부온도는 2 ~6℃ 범위에서 2℃의 증가시켜 시뮬레이션을 수행한 결과는 Table 2와 같다. 양봉사의 내부온도는 환기팬 작동을 위한 설정의 기온 보다 설정내부온도의 영향을 더 많이 받는 것으로 나타났으며, 적정 내부온도를 유지하는 범위에서 선택한 곳의 높이 높은 것이 유리하므로, 환기팬 작동기온의 제어조건은 설정의기온 을 9℃로, 설정내부온도를 4℃로 하는 것이 가장 적합한 것으로 분석되었다. 이러한 결과를 토대로 Table 1과 같이 환기팬 작동기온 B를 구성하였으며, 의기온이 9℃보다 높을 경우에는 양봉사 내부온도에 관계없이 최소한기량이 이루어지도록 하고, 의기온이 9℃보다 낮을 경우에는 양봉사 내부온도를 고려하여 내부온도가 4℃보다 높을 경우에는 최대 환기가 이루어지도록 안전작동 하도록 하였으며, 4℃보다 높을 경우에는 최소한기가 이루어지도록 하였다.

![Fig. 1. Comparison of calculated and measured inside temperatures of bee house.](image)

결과 및 고찰

1. 양봉사 열판정 해석 프로그램의 적용성
양봉사 열판정 해석 프로그램이 가공될 기상조건을 고려한 양봉사 설계에 적용이 가능할지를 판단하기 위하여 시뮬레이션 결과와 실험결과를 비교하였으며, 그 결과는 Fig. 1과 같다. Fig. 1은 환기팬 작동방식을 A와 B로 하였을 경우에 의기온의 변화가 비슷한 결과를 나타내며 시뮬레이션과 실제 결과의 차이가 작동방식 A의 경우에는 0.2~2.7℃(평균 1.0℃)로 나타났으며, 작동방식 B는 0.0~1.6℃(평균 0.6℃)로 나타났다. 실제와 계산에 의한 양봉사 내부온도가 최고 1.6~2.7℃까지 차이가 나는 것인 시뮬레이션을 이용하여 양봉사 내부온도를 예측할 경우에는 1시간 간격으로 양봉사 내부온도를 계산하기 때문에 환기팬 작동방식에서 경계조건인 내부온도가 6℃ 이하가 되면 환기팬 작동이 종료하여야 하며 1시간 동안 계속 작동이 작동하는 것으로 계산하기 때문에 다른 큰 차이가 발생하였다. 그러나 실제와 계산에 의한 내부온도의 차가 평균 1.0℃ 이하이므로 적절한 위치와 섬세의 오차범위를 감안한다면 양봉사 열판정 해석 프로그램은 양봉사 설계에 적절하게 이용할 수 있을 것으로 판단된다.
2. 휘기판 작동방식별 양봉사 내부온경의 조절 성능

2.1. 휘기판 작동방법에 따른 양봉사 내부의 온도 변화

Fig. 2 및 Table 3에서 알 수 있는 바와 같이 휘기판 작동방식 A에 따라 작동한 경우, 외기온이 -2.3 ~ 16.2°C(평균 5.1°C)일 때 양봉사의 내부온도는 7.1 ~ 19.3°C(평균 8.3°C), 벌통의 내부온도는 8.8 ~ 11.3°C(평균 9.8°C)로 나타났으며, 외기온의 변화가 18°C 정도 일 때, 양봉사 내부의 온도 변화는 약 3.2°C였다. 또 이러한 휘기판 작동방식 B에 따라 작동한 경우, 외기온이 1.0 ~ 15.5°C(평균 6.9°C)일 때 양봉사의 내부온도는 5.0 ~ 8.4°C(평균 6.2°C), 벌통의 내부온도는 5.6 ~ 8.6°C(평균 7.0°C)로 나타났으며, 외기온의 변화가 18°C 정도일 때, 양봉사 내부 및 벌통내부의 온도 변화는 약 3.3°C이었다. 따라서 양봉사 내부 및 벌통 내부의 온도로는 둔가 휘기판 작동방식 모두 3°C 내외의 정도임을 알 수 있었다.

Fig. 2에서 알 수 있는 바와 같이 외기온이 비슷한 조건에서도 작동방식 B의 경우가 A 보다 양봉사 내부의 온도가 대체로 더 낮았으며, Table 3으로부터 작동방식 A에 비하여 작동방식 B의 경우가 벌통 내부의 온도가 평균 2.8°C, 양봉사 내부의 온도가 평균 2.1°C 더 낮은 값을 알 수 있었다. 이것은 Lee 등 (1998b)이 제시한 휘기판 작동방식에 따라 양봉사 내부의 온도를 최고 28°C까지 할 수 있다는 내용을 토대로 실현결과와 작동방식 B가 A 보다 휘기판이 우수함을 확인할 수 있는 실험결과이다.

![Fig. 2. Inside and outside temperature variation of beehouse.](image)

![Fig. 3. Inside and outside humidity variation of beehouse.](image)

Table 3. Maximum, minimum, and average of inside and outside air temperature.

<table>
<thead>
<tr>
<th>Fan operation method</th>
<th>T_max(°C)</th>
<th>Average</th>
<th>T_min(°C)</th>
<th>Average</th>
<th>T_ave(°C)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>16.2</td>
<td>-2.2</td>
<td>5.1</td>
<td>10.3</td>
<td>7.1</td>
<td>8.3</td>
</tr>
<tr>
<td>B</td>
<td>15.5</td>
<td>1.0</td>
<td>6.9</td>
<td>8.4</td>
<td>5.0</td>
<td>6.2</td>
</tr>
<tr>
<td>A - B</td>
<td>0.7</td>
<td>-2.2</td>
<td>-1.8</td>
<td>1.9</td>
<td>2.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

- 130 -
2.2. 항기편 작동방식에 따른 양봉사 내부의 상대습도 변화

양봉사의 항기편 작동방식별 외부의 상대습도 변화에 따른 내부의 상대습도 변화를 분석한 결과는 Fig. 3과 같다. Fig. 3에서 알 수 있는 바와 같이 항기판을 작동방식 A에 따라 작동한 경우 외부의 상대습도가 32.4~74.3%(평균 56.7%) 범위였는데, 양봉사 내부의 상대습도는 49.3~65.4%(평균 59.5%) 범위였으며, 외부습도의 편차는 41.9%였고, 양봉사 내부의 습도편차는 16.1%였다. 그리고 항기판을 작동방식 B에 따라 작동한 경우에는 외부습도가 25.9~81.7%(평균 57.4%) 범위였는데, 양봉사 내부습도는 49.9~64.2%(평균 55.9%) 범위였으며, 외부의 편차는 55.8%이고, 양봉사 내부의 습도편차는 14.4%에 불과하였다.

이러한 결과로 미루어 볼 때, 항기판 작동방식 A와 B 모두 줄이기 양봉기에 적합한 습도범위(50~75%) 내에 있었으나, 개선된 항기판 작동방식에 따른 양봉사 내부습도의 최고, 최저편차가 각 2%, 평균습도가 약 5% 감소하여 개선된 항기판 작동방식에 비해 습도운정조절에 있어 좀 더 안정적인 것으로 나타났다.

적요

본 연구에서는 양봉사 내부환경을 보다 효과적으로 조절할 수 있는 항기판 작동방식을 구현할 경우 이를 실현하기 위하여 시뮬레이션을 통해 얻어진 항기판 작동방식에 대한 연구결과를 양봉사에 직접 적용하여 실험을 실시하였으며, 양봉사 내부의 온도 및 습도변화에 대한 시뮬레이션과 실 실험결과를 비교 분석하여 양봉사 실내외 양봉사 열환경 해석 프로그램의 적용성을 검토하고 실험결과를 이용하여 항기판 작동방식별 양봉사 내부환경의 조정성능을 분석하였다. 개발된 양봉사 열환경 해석 프로그램은 양봉사 실내외에 적용해 이용할 수 있을 것으로 평가되었다. 개발된 항기판 작동방식 B의 경우 A의 경우보다 양봉사 내부의 습도편차가 떨어지고 더 낮으며, 평균적으로 양봉사 내부는 2.8℃, 양봉사 내부는 2.1℃ 더 낮았다. 이것은 Lee 등(1998b)이 제시한 항기판 작동방식에 따르 양봉사 내부의 습도편차를 최고 2.8℃까지 줄 수 있다는 내용을 맞받침하는 실험결과이다. 항기판 작동방식 A와 B 모두 열이 양봉기에 적합한 상대습도 범위(50~75%)였으며, 양방향 B가 A보다 양봉사 내부습도의 최고, 최저편차가 각 2%, 평균습도가 약 5% 감소하여 항기판 작동방식에 비해 상대습도운정조절 속성이 더욱 우수하고 효율적인 것으로 관찰되었다.

주제어 : 항기판, 시뮬레이션, 실험

인용 문헌