Comparison of Effectiveness of Wearing Two Different Brassieres Made by Draping Method: Stretchable Versus Unstretchable(cotton) Textile

Hee-Jeong Son*

Bivocational Associate Professor, Dept. of Apparel Design, Kyong-Hee Univrsity

(2003. 2. 15. 접수: 2003. 5. 31. 채택)

Abstract

The shape of women’s breast is the most important part of body silhouette. For the high-fitted clothes, in particular, more refined brassiere effective enough to show the beautiful line of female breast is asked. This study focuses on comparing the difference of the two different textiles of brassiere as to their effectiveness as a brassiere. The Stockman Lingerie Mannequin made by England is used for the draping method for the brassiere pattern. Two different brassieres of stretchable and unstretchable(cotton) textiles respectively were made out of this pattern, and the difference of effectiveness wearing the two brassieres was compared. 30 females ranging in the ages of 19 through 24, and whose size is 75A were selected as the test group who are to wear them. The result of each measurement proved that the cotton brassiere is more effective than the stretchable brassiere as a whole considering center concentration of breast, projection of breast, and bust up function. The result of the test on satisfaction of wearing brassiere was also in favor of cotton brassiere as to projection effect, bust up effect, making a good shape of bust. For the cup, in particular, unstretchable textile is more effective for making a breast look better.

Key words: brassiere(브래지어), draping method(입체제단), stretchable textile(스트레치 직물), unstretchable textile(비스트레치 직물)

1. 서 론

성인여성 의복의 설계를 결정하는 가장 중요한 부분은 유방이다. 이 유방부위를 안정하게 감싸서 경용(견고), 방진(방진) 보온(보온) 효과를 목적으로 작용하고 있는 브래지어는 신체에 밀착성이 높은 의복일수록 기술자의 형태를 보여주는 기능이 더욱 요구된다고 할 수 있다. 미적적 더 희망한 유방의 형태를 위한 브래지어의 기능은 처진 횡가슴을 받쳐주거나 종양으로 횡가슴을 모아주는 기능이다. 유방은 제주 및 연령의 증가에 따라 유방위치가 하
수고하고 유용한 도움이 받았습니다. 홍영재의 사례가 매우 흥미로웠습니다. 그의 방향성은 바람직함으로 향하는 경영이 있었습니다. 이러한 유인형성은 여야의 성장, 연결의 성공에 따라 필연적 으로 발생하게 되므로 발전된 유방을 모아보고 합리적 주도성 기업의 보고를 강화하는 브레지어에 착용하는 방법이 필요할 필요가 있습니다. 이러한 기능을 용인한 브레지어는 법규의 편의성 및 소재에 따라 그 효과가 다르게 나타난다.

한편, 최근의 축적시장의 규모는 약 1조 2천억원 규모로, 전체 의료시장(13조원의 9% 안팎)을 차지하고 있으며 기능성 및 패션성이 높은 고부가가치 상품의 매출이 매우 증가하고 있는 추세이다. 이것은 브레지어에 있어서도 패션성이 높은 소비자의 요구에 부응하기 위한 인체공학적 디자인 및 패턴개발, 소재개발이 이루어져야 할 필요로 한다. 브레지어의 소재로서 현재 다양한 스탠레치 소재들이 많이 사용되고 있으며 이것은 기존의 비스테레치 소재와 다른 특성을 나타내고 있다. 따라서 비스테레치 소재와 스탠레치 소재에 의한 브레지어에 대한 기능성 및 설계성을 비교하여 그 차이를 연구하는 것은 기능성 이 높은 브레지어 개발의 기초연구로서 의미있는 일이라고 시사한다.

기존의 브레지어에 대한 연구는 실적조사 및 현황조사에 관한 연구인(2), 손혜선파(3). 브레지어의 적합성과 착용효과(김신숙(4), 음성경(5), 강애성(6), 김영숙(7), 김경미(8))를 다룬 연구 등이 활발하게 나타나고 있으나 박은미(9)의 브레지어 폐쇄판착계에 대한 연구를 제외하고는 브레지어 패턴 및 소재비교에 대한 연구는 전무한 실정이다.

시판 브레지어는 브래킷 감각을 가진 정도에 따라 구분되는 1/2같 브레지어, 3/4램 브레지어, 특별 브레지어, 몰드해(판부위가 보상되지 않는 유형) 브레지어 등으로 나눌 수 있다. 박에 없다가 없는 노와이저 브레지어, 스포츠 투자 용도의 스포츠 브레지어, 여객선이 없는 스탠레칭 브레지어, 경의 재단육 속도를 낮추기 위해 보이도록 만든 붕팔입 브레지어 등이 있다. 시판의 브레지어 관매 현황을 보면<9>, 김정을<10>의 연구결과에서 나타난 것처럼 의와이어형 브레지어에 대한 소비자와 선호도가 높아 대부분의 브레지어 디자인은 의와이어형을 기본으로 하고 있으며<11> 외아이가 없는 유형은 노와이저 브레지어로서 분류되고 있다. 일반적으로 브레지어의 착용효과는 두대성에 비해 대체로 만족도가 높은 편이다. 노년충만주의 가습점화등이 적은 만년한 브레지어를 선호하고 있으며<12> 젊은 여성은 다양한 기능이 추가된 기능성 브레지어를 선호한다. 이러한 기능성 브레지어의 개발은 한정리업체의 판매액을 높이는 높이증가<13>으로서 다양한 종류의 상품들이 시장되고 있으며 향후 이러한 소비자의 유행을 만족시킬 수 있는 보다 안전하고 설이성이 높으며 진강이 도움을 주는 기능성 브레지어의 개발이 요구된다.
브레져어의 소재는 기본적으로 폴리우레탄 소재가 약 15%~30% 내외, 그 외 폴리에스테르 및 난온, 레이온 등의 합성소재가 혼합되어 사용되고 있으며, 컨
포워에는 별도로 다양한 종류의 레이온이 사용되기
도 한다. 합성섬유 파부에 담는 촉감을 고려하여
파부에 담는 부위는 트리코트조직의 부드러운 촉감
을 지닌 합성섬유를 사용하여 부드럽고 풍성한 소재
의 양감을 안감으로 사용하기도 한다. 컨포워의 피
드가 있는 브레져어는 브레져어의 페드두께로 인해
여름용으로는 적합하지 않지만 가습을 안정있게
고정시키며 심박적으로 압박된 의관을 형성하고
있어 페드가 있는 브레져어가 일반적으로 많이 사용
되고 있다. 컨포워에 페드가 없는 홍경소재의 브레
져어의 경우 스파데스, 혹은 신축성이 없는 합성
소재 레이온을 사용하여 브레져어를 제작한다. 이러
한 홍경소재는 내구성이 약한 스파데스나 양감이
순상되는 단점이 있지만 뜨거운 여름을 막는 브레
져어로서 사용되고 있다. 내구성이 및 형제이상성
이 높은 기능성 브레져어 개발을 위해 다양한 소재
개발이 요구된다고 할 수 있다.

따라서 본 연구는 앞서의에 의한 브레져어의
제작방법을 제시하고 누드상의 유방 및 비스트레
치 소재와 스파데스 소재에 의한 브레져어 제작방
법의 유방효과를 비교하여 제작효과와 만족도를 조사
하므로 소재별 브레져어 제작방법 및 효과적인 브
레져어 소재 사용 방법을 개발하고자 하였다. 구체
적된 연구 방안은 다음과 같다.

첫째, 브레져어 입체형태를 제작한다.- 프랑스 간세
리 전문학교(Ecole Denyse Rouseau)의 교과물의 재
현을 연구가 한국인의 가슴사이즈에 맞추어 조정한
패턴을 기초로하여 브레져어 입체형태를 제작한다.
둘째, 입체형태에 의한 브레져어는 스파데스 소재와
비스트레치 소재로 각각 제작한다. 셋째, 누드상의
유방형태, 비스트레치 소재 브레져어 제작 후의 유방
형태, 스파데스 소재 브레져어 제작 후의 유방 형태에
대한 각 부위별 사이즈 비교를 통해 제작효과를 분석
한다. 넷째, 누드상의 유방형태, 비스트레치 소재 브
레이저 제작 후의 유방형태, 스파데스 소재 브레이저
제작 후의 유방형태에 대한 실험자의 사용형태를
비교 분석한다.

Ⅱ. 연구방법

1. 실험실

1) 실험기간 및 대상

기간은 2002년 8월 한달간 실시하였으며 실험자는
상반신 측의 실험자, 연소재 브레져어 제작상태, 스파
데스 소재 브레져어 제작상태 등 3회에 걸쳐서 측정 되
었다. 측정지 브레져어의 어깨관은 측정자의 브레져어
를 측정한 상태에서 심리적 외관성 및 안감감을 고
려하여 조정하였다. 실험자는 21세에서 25세의 대학
생 160명중 브레져어사이즈 75A, 가슴둘레 72.6cm~
77.5cm 가슴둘레와 마디감를 측정차이 10.0cm 내외
(8.76cm~11.25cm)K 0070.1999의 30명의 실험자로
대상으로 했었다.

2) 신체측정항목

실험자의 신체측정항목은 (표 1)에 나타났다. 기
본신체측정항목과 제작효과비교를 위한 신체측정항
목으로 구분된다.

3) 제작효과 평가항목

제작효과를 평가하기 위한 5개 항목은 (표 2)에 나
타났다. 5점 리커드 척도법(1점 매우 불만, 2점 약간
불만, 3점 보통, 4점 약간 만족, 5점 매우 만족)에 의
해 실험자가 기술을 보며 자신을 평가하였다.

![그림 1] 측정부위.
표 1. 신체계측 항목

<table>
<thead>
<tr>
<th>항목</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>기본</td>
<td>기부</td>
</tr>
<tr>
<td>신체계측</td>
<td>음주가율</td>
</tr>
<tr>
<td>항목</td>
<td>카스팅률</td>
</tr>
<tr>
<td></td>
<td>일가슴률</td>
</tr>
<tr>
<td>중앙</td>
<td>6. 함중심-유방내면점길이</td>
</tr>
<tr>
<td>집중</td>
<td>7. 일산-유방외면점길이</td>
</tr>
<tr>
<td>효과</td>
<td>8. 첫가슴길이</td>
</tr>
<tr>
<td>착용</td>
<td>9. 가슴길이</td>
</tr>
<tr>
<td>효과</td>
<td>10. 첫가슴길이-첫가슴길이 경계점까지의 측정길이</td>
</tr>
<tr>
<td>파악</td>
<td>11. 유방주방경-유방상연점에서 첫가슴 지점까지의 수직거리</td>
</tr>
<tr>
<td>유방</td>
<td>12. 유방주방경-첫가슴길이에서 유방하 연절(일가슴)까지의 수직거리</td>
</tr>
<tr>
<td>덕률</td>
<td>13. 유방내측경-유방내연점에서 첫가슴 지점까지의 수직거리</td>
</tr>
<tr>
<td>축척</td>
<td>14. 유방외측경-유방외연점에서 첫가슴 지점까지의 수직거리</td>
</tr>
<tr>
<td>중심</td>
<td>15. 유방부두길이-유방상연점에서 첫가슴 지점까지의 래프길이</td>
</tr>
<tr>
<td>효과</td>
<td>16. 유방하부길이-첫가슴길이에서 최대하 수평길이의 최대길이</td>
</tr>
<tr>
<td></td>
<td>17. 유방내측경-첫가슴길이에서 유방내 연점까지의 래프길이</td>
</tr>
<tr>
<td></td>
<td>18. 유방외측경-첫가슴길이에서 유방외 연점까지의 래프길이</td>
</tr>
</tbody>
</table>

유방 올림 효과

<table>
<thead>
<tr>
<th>항목</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. 목달장 첫가슴길이</td>
<td></td>
</tr>
</tbody>
</table>

표 2. 착용효과 평가문항

<table>
<thead>
<tr>
<th>문항내용</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>첫가슴을 중앙으로 모아준다.</td>
</tr>
<tr>
<td>2</td>
<td>가슴을 붙근하게 세워준다.</td>
</tr>
<tr>
<td>3</td>
<td>첫가슴을 떨어 죽어준다.</td>
</tr>
<tr>
<td>4</td>
<td>가슴선을 길게 짜준다.</td>
</tr>
<tr>
<td>5</td>
<td>전체적으로 만족스럽다.</td>
</tr>
</tbody>
</table>

2. 분석방법

본 연구의 신체계측 자료는 SPSS 10.0 프로그램으로 처리하였고, 사용된 분석방법은 다음과 같다.

1) 계측항목별 계측치와 만족도 문항에 대한 평균, 표준편차, 최소치, 최대치를 구하였다.

2) 주요 신체계측항목에 대한 일원분산분석(ANOVA), Dunnett Test, T-Test를 랜하였다.

3. 브레지어 입체제단과 실험 브레지어 제작

1) 브레지어 입체제단

인대는 영국산 스톡맨(Stockman) 매니큐어로서 래지리 및 수영복 전용 인대 2호를 사용하였으며 인대 수는 다음과 같다.

(1) 입체제단준비작업

(가) 첫가슴של드제작

브레지어의 첫의 입체제단을 위한 첫가슴של드를 제작 부착한다. 이 기존.hex단은 프랑스 래지리 전문학교 에피 테니스존의 패턴을 기본으로 연구자 가 한국인의 사이즈에 맞추어 크기를 조정한 패턴이다. 이때 적절하게 솜을 넣어서 너무 얇거나 두 동등하지 않게 주의한다.

(나) 머슬관리

25cm*15cm 1장, 허리 10cm*10cm 2장

(다) 다자인 래인테이프 두르기

기존 연구결과(강여선) 삼각형 및 기능성이 높은 래인트리 패턴이 브레지어를 제작한다.

(라) 상의의 B.P을 지나는 선은 직선적으로 칠다.

그림 2. 래지리 전용 인대 (영국 Stockman mannequin).

表 3. 인대치수

<table>
<thead>
<tr>
<th>항목</th>
<th>인대치수</th>
</tr>
</thead>
<tbody>
<tr>
<td>가슴둘레</td>
<td>84cm</td>
</tr>
<tr>
<td>일가슴둘레</td>
<td>74cm</td>
</tr>
<tr>
<td>하리둘레</td>
<td>61.5cm</td>
</tr>
<tr>
<td>영단둘레</td>
<td>91.7cm</td>
</tr>
</tbody>
</table>
항하게 하여 라인을 완성한다. 뒤중심 날개의 새로운 너비는 뒤고리 롱의 너비에 의해 결정한다 (1.5~3.5cm).

(2) 일체제단 작업 순서
브래지어의 각 부위의 명칭은 다음과 같다.
① 하鲠안쪽: 하鲠안쪽부터 시작한다. 하鲠의 식서를 밑과 수평이 되게 하고 롱가슴패드를 감싸는 둘레로 하여 밑기지 않도록 유의해야 하며 드레이핑한다. 환경되는 왼쪽으로 점착은 후 시점을 1cm 남기고 바깥쪽으로 점착한다. B.P.를 화살표로 표시하고 표면에 앉추하고 이라고 쓰거나 번호 1을 써서 씨를 한다.
② 하鲠바깥쪽: 하鲠바깥쪽도 식서를 밑과 수평이 되게 하여서 드레이핑하고 왼쪽으로 점착은 후 시점을 1cm 남기고 바깥쪽으로 점착한다. B.P.를 표시하고 표면에 바깥쪽하 ebp이라고 쓰거나 번호 2을 써서 심별한다.
③ 상 عبدالله: 식서가 상التهاب의 중앙에서 밑과 수평이 되게 하여서 드레이핑한 후 환경측을 연령으로 점착은 후 시점을 1cm 남기고 바깥쪽으로 점착한다. B.P.를 화살표로 표시하고 표면에 상 abdom이라고 쓰거나 번호 3을 써서 심별한다.
④ 와이어두르기: 하 ebp과 상طيب에 와이어를 없어서 와이어 안쪽에서 점을 찍어 표시한다.
⑤ 앞중심: 앞중심은 ④에서 제한 점과 자연스럽

게 연결되게 하면서 인대와 광막이 틀리지 않게 드레이핑하고 끝과 만나는 부분에 맞춤포를 넣어주며 완성선을 연필로 점찍은 후 접근을 1cm 남기고 바깥쪽으로 접어준다. 표면에 앞중심이라고 쓰거나 반호 4를 써서 식별한다.

⑥ 앞판: 앞판은 중심이 바닥과 수평이 되게 하면서 드레이핑한 후 완성선을 연필로 점찍은 후 상질과 하질이 만나는 부분에 맞춤포하고 접근을 1cm 남기고 바깥쪽으로 접어준다. 표면에 앞판이라고 쓰거나 반호 5를 써서 식별한다.

⑦ 날개: 위중심은 앞판에서 수평으로 시작해서 뒤중심에서는 1.5cm 밖으로 내려서 드레이핑한다. 완성선을 연필로 점찍은 후 접근을 1cm 남기고 바깥쪽으로 접어준다. 표면에 날개라고 쓰거나 반호 6을 써서 식별한다.

(3) 평면패턴화 작업 (비스트레치 작물을 위한 패턴)
① 암체패턴에 의해 형성된 광복패턴을 트레이싱 하며 표시한다.
② 광복패턴 밑에 트레이싱하파를 결고 그 밑에 우드락을 넣고 광복패턴이 움직이지 않도록 헤지 혹은 터널이 만들어지도록 고정한다.
③ 광복패턴의 완성선을 따라 표시한 패턴이 트레이싱하파의 구멍을 내며 정확하게 표시한다. 트레이싱하파에 올겨진 패턴의 완성선을 따라 금자와 연결을 사용해서 완성선을 제대로 정리한다.(그림 3 참조).

(4) 평면패턴화 작업 (수축용 작물을 위한 패턴)

[그림 7] 비스트레치 직물을 위한 브래지어 패턴
(가로선은 식서선의 의미로, 각 번호의 명칭은 그림 6과 같은)

1차 평면패턴으로 정리된 패턴을 수축용 직물을 위한 패턴으로 수정한다. 하 jmp 바깥패턴과 안쪽 패턴, 상절, 앞판, 날개를 수축물에 따라 (그림 3)과 같이 줄여준다. 줄이는 양을 결정하기 위해 본 연구에서는 0.3cm, 0.5cm, 1.0cm의 3가지 패턴으로 브래지어를 제작한 후 왜이어형이 적합하고 외관상 만 브래지어와 형태가 유사하며 심미성이 높은 0.5cm를 적용하였다. 심형물에 따른 다양한 패턴수정 방법은 추후연구에서 다루어져야 할 것이다. 줄이는 방법은 다음과 같다.

① 하 jmp 안쪽접의 중심선(가슴 다프트선)을 그림의 좌측부분(0.5cm) 만큼 각각 줄여준다.
② 하 jmp의 바깥접 중심선(가슴 다프트선)을 그림의 좌측부분(0.5cm) 만큼 각각 줄여준다.
③ 상접의 찢복지점부분에 하jmp의 줄인양만큼 평행선을 그어 줄여준다.
④ 중심선은 줄이지 않는다.
⑤ 앞판들도 바깥접을 줄여준다면 이때 식서선과 평행하게 안쪽으로 줄여준다(0.5cm).
⑥ 날개부위 중 앞판과 만나는 선을 줄여준다. 앞판의 일부 격자 식서선과 같이 평행하게 줄여준다 (0.5cm).

2) 실험용 브래지어의 제작
실험용 소재는 면과 스펜트리직물로 나누어 제작되었다. 면은 인체에 직접 닿는 직물로서 편소성 및 내구성이 뛰어나 전통적으로 속옷으로 적합한 소재로 평가되고 있다. 따라서 늘어나지 않는 특성을 지닌 소재 중 브래지어제작에 적합한 소재로서 면을 선택하였다. 스펜트리직물은 폴리우레탄의 혼성용으로 따 라서 매우 다양한 신도를 나타낸다. 본 연구에서는 스펜트리직물로서 웨이드가 없는 시판 브래지어에 사용된 직물의 폴리우레탄 혼성용과 유사한 직물을 선택하여 실험용 브래지어를 제작하였다.

(1) 소재특성
실험용 브래지어제작에 위한 소재의 물리적 특성은 (표 4)와 같다.

(2) 제작방법
① 하 jmp 바깥 접과 하 jmp안쪽패턴을 봉제한다.
Ⅲ. 결과 및 고찰

1. 기초통계분석결과

피험자 30명에 대한 기초통계분석결과는 다음과 같다. 키 161.78cm, 몸무게 53.4kg, 로리지수 1.26의 평균적인 비만도를 지닌 여성이었다.

1) 활용효과에 대한 신체계측치 분석결과

활용효과 분석을 위해서 각 신체수치를 나체상태(nude), 스테레치 소재 브레지어(stretch), 먼 소재 브레지어(cotton)를 활용한 상태에서 각각 계측한 후 계측치 비교를 위해 세 소재간 차분분산분석을 실시하였고 변 산자와 스테레치 소재의 비교를 위해 T-test를 행하여 그 결과를 표 6에 나타냈다.

가슴둘레의 나체상태 평균은 83.84cm이며 스테레치소재 브레지어는 83.09cm, 먼 소재 브레지어는 83.17cm이다. 나체상태보다 브레지어를 착용한 치

<table>
<thead>
<tr>
<th>키</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>키</td>
<td>161.78</td>
<td>4.6861</td>
<td>153.00</td>
<td>170.00</td>
</tr>
<tr>
<td>몸무게</td>
<td>53.40</td>
<td>2.1070</td>
<td>50.00</td>
<td>56.00</td>
</tr>
<tr>
<td>옵가슴둘레</td>
<td>83.51</td>
<td>2.0572</td>
<td>78.50</td>
<td>85.50</td>
</tr>
<tr>
<td>가슴둘레</td>
<td>83.84</td>
<td>3.9071</td>
<td>79.50</td>
<td>88.00</td>
</tr>
<tr>
<td>밑가슴둘레</td>
<td>74.62</td>
<td>1.5969</td>
<td>70.00</td>
<td>79.00</td>
</tr>
<tr>
<td>Rohrer Index</td>
<td>1.26</td>
<td>8.979E-02</td>
<td>1.12</td>
<td>1.40</td>
</tr>
</tbody>
</table>
수가 약간 작았으나 통계적으로 유의적인 차이를 나타내지 않았다.

첫가슴의 중앙점중효과가 과학적 인 해부 종양중점점장의 길이는 길이가 짧음수록 중앙점중효과가 크며, 면, 스테레치소재 브레지어의 모두 1.21cm, 1.24cm로서 남이 1.96cm 보다 작게 나타나 브레지어를 착용하여 첫가슴을 모으는 효과는 나타났지만 두 소재간 차이는 나타나지 않았다. 양산-유방내점점장의 길이가 길수록 첫가슴을 모아주는 효과가 크며, 남채상(5.46cm) 보다 브레지어(스트레치 7.58cm, 면 7.68cm)를 착용하여 길이가 길어져 첫가슴을 모아주는 효과가 매우 높게 인정되었으나 소세에 차이는 인정되지 않았다. 면소재가 0.1cm 더 길게 나타났다. 첫가슴 거리는 남채상 18.21cm, 스테레치 소재가 16.83cm, 면 소재 브레지어가 16.28cm로 나타났으며 유의성 검정작과 각 평균값에 대한 통계적 유의성이 인정되었다. 즉 남채상가 가장 첫

유방돌출효과를 나타내는 계측항목 중 가슴길이, 유방상부지방, 유방내지방, 유방외측지방, 유방상부지방, 유방외측지방의 세 평균값 차이에 대한 유의성이 인정되어 남채상과 브레지어

</s>
<table>
<thead>
<tr>
<th>항 목</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>F-test</th>
<th>Dunco's test</th>
<th>T-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>가습률</td>
<td>30</td>
<td>83.8400</td>
<td>3.9071</td>
<td>0.368</td>
<td></td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>83.0900</td>
<td>3.5823</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>83.1700</td>
<td>3.6630</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>83.3667</td>
<td>3.6935</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>우방충취 효과</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>양주실산-우방내섬질밀이</td>
<td>30</td>
<td>1.9600</td>
<td>1.5639</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.2100</td>
<td>0.1605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.2400</td>
<td>0.1522</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>1.4700</td>
<td>0.9667</td>
<td>6.504**</td>
<td>A B B</td>
<td>1.518</td>
</tr>
<tr>
<td>양주실-우방외섬질밀이</td>
<td>30</td>
<td>5.4600</td>
<td>0.6207</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.5800</td>
<td>0.9386</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.6800</td>
<td>0.7189</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | 90 | 6.9067 | 1.2401 | 79.35**| B A A | 8.479*
| 철짝지간질 | 30 | 18.2100 | 1.0768 | | | |
| | 30 | 16.8500 | 0.9563 | | | |
| | 30 | 16.2800 | 0.8123 | | | |
| | 90 | 17.1067 | 1.247 | 32.58**| A B C | 5.180* |
| 가습길이 | | | | | | |
| | 30 | 3.1000 | 1.3403 | 3.28 | A B B | 6.641* |
| | 30 | 2.6500 | 0.5722 | | | |
| | 30 | 2.5000 | 0.7931 | | | |
| | 90 | 2.7500 | 0.9813 | | | |
| 철짝지간-밀가습길이 | | | | | | |
| | 30 | 6.6000 | 1.4137 | | | |
| | 30 | 6.1700 | 1.3018 | | | |
| | 30 | 6.3500 | 0.9716 | | | |
| | 90 | 6.3733 | 1.2419 | 0.9 | | 4.106* |
| 유방상부질백 | | | | | | |
| | 30 | 3.9000 | 0.8890 | | | |
| | 30 | 5.2000 | 1.0222 | | | |
| | 30 | 4.4600 | 0.8892 | | | |
| | 90 | 4.5200 | 1.0688 | 14.57**| C A B | 4.101* |
| 유방하부질백-유방내쪽질백 | | | | | | |
| | 30 | 5.3700 | 1.6400 | | | |
| | 30 | 4.1500 | 1.1200 | | | |
| | 30 | 4.8400 | 1.5210 | | | |
| | 90 | 6.4200 | 1.7388 | 1.57 | | 3.547* |
| 유방내측질백 | | | | | | |
| | 30 | 7.4500 | 1.6554 | | | |
| | 30 | 6.7100 | 1.5371 | | | |
| | 30 | 6.5200 | 0.4979 | | | |
| | 90 | 6.8913 | 1.1083 | 6.65** | A B B | 3.987**|
| 유방외측질백 | | | | | | |
| | 30 | 6.4900 | 1.5588 | | | |
| | 30 | 5.0600 | 1.0193 | | | |
| | 30 | 4.9800 | 0.9722 | | | |
| | 30 | 5.5100 | 1.3874 | 14.72**| A B B | 1.479 |
| 유방상부길이 | | | | | | |
| | 30 | 7.8100 | 1.3241 | | | |
| | 30 | 7.1800 | 1.3105 | | | |
| | 30 | 6.9700 | 1.2864 | | | |
| | 90 | 7.3200 | 1.3412 | 3.35 | A AB A | 0.175 |
| 유방하부길이 | | | | | | |
| | 30 | 6.4100 | 1.8425 | | | |
| | 30 | 6.7000 | 1.7117 | | | |
| | 30 | 6.1700 | 1.5890 | | | |
| | 90 | 6.4200 | 1.7388 | 1.96 | | 1.233 |
| 유방내측길이 | | | | | | |
| | 30 | 9.6700 | 0.5736 | | | |
| | 30 | 7.7100 | 1.0437 | | | |
| | 30 | 7.5600 | 0.8156 | | | |
| | 90 | 8.3133 | 1.2703 | 59.83**| A B B | 6.847* |
| 유방외측길이 | | | | | | |
| | 30 | 9.2800 | 1.7154 | | | |
| | 30 | 7.1000 | 0.6645 | | | |
| | 30 | 6.7500 | 0.5938 | | | |
| | 90 | 7.7100 | 2.3644 | 156.22**| A B B | 4.846* |
| 유방충취 효과 | | | | | | |
| 단괴정-복측길이 | 30 | 18.9700 | 4.1444 | | | |
| | 30 | 17.7300 | 3.8823 | | | |
| | 30 | 15.7500 | 3.6733 | | | |
| | 90 | 17.4833 | 3.7375 | 156.22**| A B B | 41.846***
눈의 효과는 면소재가 더 뒤어난 것으로 나타났다. 유방상부길이 및 직경, 유방하부길이는 스테레치소재가 더 길지만 유방하부직경과 월척점질-발가슴길이는 면소재가 더 길다. 이것은 스테레치소재 브래지어의 원이 밀이므로 작동한 유방상부길이가 작경을 길어지고 유방하부 실험결과 길이도 길어졌기 때문에 면 소재 브래지어는 늘어나지 않는 허안에 점가슴이 절취되면서 모아가므로 점가슴이 앞으로 들출되어 작정이 길어져기 때문이다. 이것은 브래지어 착장상태의 안경판에서 보이니 한눈에 보이는 것을 말한 것이다.

点이습의 유용효과를 나타내는 복합점-월척점질 길이 항목에서 세 항목별 평균값에 대한 유의성 및 면, 스테레치 소재간 유의성도 인정되었다. 브래지어 작용에 의한 유방활물효과가 인정되었으며 스테레치소재보다 면 소재 브래지어가 유방활물효과가 뒤어 나오는 것으로 나타났다. 나체상태 18.97cm에서 스테레치소재 브래지어 착용상태에서 17.73cm로, 1.24cm 더 줄었으며 면 소재 브래지어 착용상태에서 15.75cm로서 나체상태보다 3.22cm 더 줄어 매우 높은 점가슴 유용효과를 나타냈다.

2) 착용만족도에 대한 분석결과

브래지어의 소재별 착용만족도 비교를 위해 피험자가 기호를 보면 석업 착용만족도를 달렸다. 전체적으로 5점 만점 중 유방활동효과 만족도 중 스테레치 소재 브래지어의 만족도 점수를 제외한 모든 효과에 대해 3.0이상의 만족도를 나타내보도성의 만족도를 나타내며 면소재 브래지어가 모든 항목에서 3.7이상의 높은 만족도를 나타냈다.

작용효과별로 보면 증가점질효과를 제외한 유방 활동효과, 유방활동효과, 가슴점질효과, 전체만족도에서 두 소재간의 만족도에 대한 유의적인 차이가 인정되었으며 모든 면 소재 브래지어에 대한 만족도 점수가 높게 나타났다. 가장 만족도가 높은 항목은 가슴점질효과로 면 소재 브래지어가 4.4로 높은 만족도를 나타냈다.

표 7 소재별 브래지어 착용효과 만족도 비교결과

<table>
<thead>
<tr>
<th>착용효과</th>
<th>브래지어</th>
<th>Mean</th>
<th>Std Deviation</th>
<th>T-test</th>
<th>T-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>중방점질 효과</td>
<td>면소재 브래지어</td>
<td>3.70</td>
<td>1.0113</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>스테레치소재 브래지어</td>
<td>3.40</td>
<td>1.0262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>유방활동 효과</td>
<td>면소재 브래지어</td>
<td>3.70</td>
<td>0.9057</td>
<td>6.23***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>스테레치소재 브래지어</td>
<td>2.90</td>
<td>0.7044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>유방점질 효과</td>
<td>면소재 브래지어</td>
<td>3.70</td>
<td>0.9057</td>
<td>5.66***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>스테레치소재 브래지어</td>
<td>3.00</td>
<td>0.6364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가슴점질 효과</td>
<td>면소재 브래지어</td>
<td>4.40</td>
<td>0.4930</td>
<td>10.78***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>스테레치소재 브래지어</td>
<td>3.40</td>
<td>0.6675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>전체 만족도</td>
<td>면소재 브래지어</td>
<td>3.80</td>
<td>0.7531</td>
<td>4.33***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>스테레치소재 브래지어</td>
<td>3.20</td>
<td>0.9860</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

본 연구는 심리적인 외관 및 착용만족도가 높은 브래지어 개발을 위한 기초연구로서 임제제안방에 의한 브래지어제임 제작방법을 제시하고 소재별 착용 효과를 비교하기 위해 브래지어사이즈 75A의 로리저스 1.2cm의 평균적인 비만도를 지난 30명의 20대 여대생 피험자들을 대상으로 착용효과 및 만족도를 비교 분석하였으며 그 결과는 다음과 같다.

임제제안적 점가슴패드의 원형은 프랑스 판테리 전문학교(ECOLE DENYSE ROUSSEAOU)의 브래지어 겵 패턴을 한국인의 점가슴사이즈에 맞추어 조정한 패턴을 기초로 하여 임제제안을 제작하였으며 제작된 브래지어는 3개의 패턴으로 구성된 라운딩 아이라이브리아이다. 면소재 브래지어 및 스테레치 소재 브래지어 모두 착용효과에 대한 만족도 조사에 서 보도 이상의 만족도를 얻어 브래지어 패턴에 대한 적합성을 인정받았다.

스테레치 소재와 비스트레치 소재에 의해 제작된 브래지어의 착용효과 비교를 위해서 비스트레치 소재로서 슬림 79.1% 종류우래인 20.9%가 혼합된 나무조직의 합성유가 사용되었다. 착용효과 분석을 위하여 전체
19항목 중 15개의 신체치수 항목은 나체상태(nude), 스테레칭세트 브레이지어(stretch), 면 소재 브레이지어 (cotton) 상태에서 각각 측정되었다.

브레이지어의 소재별 착용효과비교를 위한 신체치 수항목 비교결과나鼻시보다 브레이지어를 착용하여 가슴둘레는 1 cm 미만으로 차이가 없으나 통계적으로 유의적인 차이는 나타내지 않았다.

착가슴의 증상및증후를 파악하기 위한 3항목 중 앞시간-유방내전질감 및 엉덩이-유방내전질감
이는 브레이지어 착용여부를 모으는 효과는 나타냈으며 착가슴 간격은 면 브레이지어의 중앙집중 효과가 높게 나타나였다.

착가슴울림효과를 나타내는 10개의 계측항목 중 유방하부부가 측정한 모든 항목에서 나체상태, 스
트레칭세트, 면 소재 브레이지어의 신체측정의 평균값
이 유의성을 나타내거나 스트레칭, 면 소재 브레이지
어 두 소견간의 평균값이 유의성을 나타냈다. 전체
적으로 유방의 둘레 효과는 면소재가 더 높았던 것
으로 나타났다. 이것은 브레이지어 의장이 높아지지 않아 엉덩이 착가슴이 차이는 효과가 높기 때문으
로 추측된다. 또한 유방상부부가 체중과 경직은 스트레
칭소재가 더 높았다.

착가슴울림효과를 나타내는 목판열-적지점질감이
항목은 브레이지어 착용에 의한 유방울림효과가 높게
일정되었으며 면 소재 브레이지어의 유방울림효과가
매우 높았다.

피험자에 의한 브레이지어 소재별 착용만족도 비
교 결과에서도 중앙점증증, 유방울림효과, 유방울
림효과, 가슴전 정직효과, 전체판태에서 모두 면
소재 브레이지어에 대한 만족도 점수가 높게 나타
났다.

브레이지어의 제작시 스트레치 소재만 사용하면 착
용감은 높지만 유방이 하사여기 유방의 중앙점증효
과 및 연출효과가 바람직소재에 비해 매우 낮
다. 또한 비스트레치 소재는 가슴을 경직 및 중앙
점증효과는 좋지만 브레이지어 성장이 신체에 다소
하는 현상이 나타나 이에 대한 보완이 요구된다. 따
라서 브레이지어의 상은 스테레칭 소재를 사용하고
하름은 이 스테레칭 소재를 사용하는 것이 더욱한
것으로 사료된다.

후속연구로서 평판제도법에 의한 브레이지어의 폐
턴과 임제제단법에 의한 브레이지어 폐턴의 비교를 통
해 그 차이점 및 장단점을 연구하고, 스테레치 소재
의 수용력에 의한 폐턴의 변화정도를 구체적으로 연
구할 필요가 있다. 또한 각 소재의 특징을 살린 기능
적인 브레이지어 개발에 대해 한 연구할 필요성이 있
다고 하겠다.

참고문헌
김정미, 이경희(2001). "시판 브레이지어의 착용감 및 착
용효과 분석." 한국의류학회지 25권 8호.
강산(1990). "능동적 Brassiere개발에 관한 연구." 이화
여자대학교 대학원 섬유학위논문.
김영숙(1998). "설인여성의 인지적 실험적 유방형상과
브레이지어 착용효과에 관한 연구." 숭명여자대학교
대학원 섬유학위논문.
한 본인취향인에 대한 연구." 숭명여자대학교 산업
대학원 섬유학위논문.
박윤미(2000). "설인여성용 브레이지어 제작기법과 원형
개발 연구." 숭명여자대학교 대학원 박사학위논문.
박윤미, 송희순(2001). "설인여성용 브레이지어형상 개발
연구 (제 1호)." 한국의류학회지 25권 4호.
박윤미, 송희순(2002). "설인여성용 브레이지어 원형 개발
연구 (제 2호)." 한국의류학회지 26권 6호.
관한 연구, 이화여자대학교 대학원 섬유학위논문.
손화순(1996). "노년여성의 브레이지어 구매설정 조사연
구." 숭명여자대학교 금융생물기술고 제학과학과연
구 11집.
한영숙(1986). "Foundation융합에 관한 조사연구." 이
화여자대학교 대학원 섬유학위논문.
이정미, 최재성(2001). "유방형 변화율 브레이지어에 대한
착용실험조사." 한국의류학회지 25권 4호.
학교 대학원 섬유학위논문.
'강세범' 2002.12.29 증강일보
www.venus.co.kr
www.brandstock.co.kr
http://www.yesmall.com/shewon/page07.html
http://life.joins.com/life/program/life_article/09%2C4449%2C
a0%257C152501%257Cserv PCIe%257C2070304%257C00.htm

127