한신대지진에 의한 하천 시설물의 피해

유권규*

1. 머리말

1995년 1월 17일에 일어난 효고(兵庫)현 남부에서 일어난 한신(阪神) 대지진은 지진에 대해 안전하다고 생각하던 일본의 토목기술에 얼마 경종을 올렸다. 관동대지진 정도의 지진을 견딜 수 있도록 설계되었다고 생각하였던 신간선과 고속도로가 붕괴되고, 철근콘크리트 건물들도 흉측한 몰골로 무너져 버렸다. 이와 동시에 하천 시설물들도 상당수 피해를 받았지만, 평상시에도 일반인들의 눈에 잘 띄지 않는 것 이 하천인지라, 그에 대한 관심도 관심도 상당히 낮았고, 그 피해 상황도 잘 알려지지 않았다. 마침 본인이 토목연구소에 파견되어 있는 관계로 하천 시설물 피해 자료의 일부를 접할 수가 있었고, 하천 관련 기술자와 공학자들에게 자신이 하천 시설물에 어떤 피해를 입히는가가 소개되는 것도 의외가 있으리라 생각하여 이에 소개한다. 본고는 토목연구소 조사단의 보고서를 토대로 그 피해 상황을 간략히 정리한 것이다.

2. 조사의 개요

한신 대지진은 1995년 1월 17일 오전 5시 46분, 아사카(明石) 해협의 20km 지하에서 발생하였으며, 진원지의 진도는 M 7.2였다. 진동은 진원지에서 약 30km에 걸쳐 동쪽 및 남서방향으로 전파되어, 동북부의 고오베시 중심가와 남서부의 아와지사마(淡路島)를 강타하였다. 이후 약 800필지 이상에 걸친 여건이 관찰되었으며, 일부 단층에서는 약 2m 이에 이르는 변화가 관찰되었다. 그럼에도 본진에 의한 각지의 진도는 나타난 것이다.

일본 건설성 토목연구소 하천부에서는 지진이 일어난 직후 7차에 걸쳐 조사반을 파견하여 하천 시설물에 대한 피해 상황을 조사하고, 그 복구 대책을 강구하도록 하였다.

일반 하천 시설물로는 낙하방 건설업체 관내 직할 하천 6수제, 8하천중 피해가 비교적 크고 조사가 가능한 3개 하천, 보조하천 11개소의 시설물을 대상으로 조사하였으며, 이들에 대한 피해 상황은 후술되어 있다. 한편, 댐 시설물로는 251개 댐을 대상으로 댐 관리자들이 임시 점검을 하였으나, 안전관리상 큰 문제는 없는 것으로 판명되었다.

조사 지지는 그림 2에 보인 바와 같이 직할 하천인 효고(兵庫) 본류 2개소, 효고의 지류인 이나가와(猪名川)의 지류인 이나가와(猪名川)의 하천인 모가와(蓑川) 1개소등의 3개소이다. 기타 조사된 소하천으로서는 주로가와(武庫川), 나카지마가와(中島川), 나시우소가와(西灘川), 시오야다가와(鯨屋谷川) 등의 11개 하천이다.

3. 피해의 개요

3.1 직할 하천의 피해

지진에 의한 피해 형태의 대부분은 독마무에 근열이 생기거나 침하된 것이다. 특히 효고 본류 및 효고 지류의 이나가와(猪名川) 모두 진원에서 약 40km 이내
에서, 제방(일반제방과 특수제방)이 침하하거나 제방 비탈면에 큰 균열이나 단차가 발생하는 등 피해가 발생하였다. 이들 하천에 일어난 피해의 개요는 다음과 같다.

① 浦川 본류 좌안 0.2~1.8km(大阪市 此花區 西島 지구)
지진의 진동에 의해 토체 부분이 불괴되어 특수 제방(高潮 대책) 및 콘크리트 보가 전적되고 독마루가 침하하였다. 독마루(특수제방의 독마루)의 침하량은 1~2m, 최대 약 3m였다(사진 1, 2 참조). 하천 앞에 위치한 西島공원에서는 토양의도의 풍하량이 폭발되었고(그림 3 참조), 인접한 수택지에서는 액상화에 의해 가옥이 수심cm 침하한 곳도 있었다.

② 浦川 본류 우안 1.2~2.0km(大阪市 西淀川區 西島 지구)
진에 진동에 의한 특수제방의 피해는 없었지만,
그림 3. 西島지구 제방의 파괴 양상

제내지 비탈면이 없으므로 이동을 하여, 제체의 절반 정도가 침하하였다(사진 4 참조). 육두부상의 균열 폭은 0.2 ~ 1.5m 정도이고, 최대 단차는 1m 정도였다. 또 제내지의 기술에서는 분사가 발견되었 다.

3.2 보조 하천 관계의 피해

兵庫県尼崎市의 藻川 우안 0.0km 부근에는 제방의 육두부, 육비탈 기습, 고수부에 걸쳐서 균열이 발생했지만, 그중에서 육비탈에는 폭 10 ~ 20 cm, 깊이 2 ~ 3m에 이르는 균열이 발생하고, 고수부에는 폭 1m, 단차 1m의 균열이 발생했다(사진 5 참조).

한편, 우안 0.4km 부근에서는 육두부에 약 1m의 큰 단차가 발생하였고, 균열은 제방의 육비탈에서 육비탈 기습에 걸쳐서 계속되어 있다. 육비탈에는 폭 10 ~ 60cm의 균열이 있으며, 그 깊이는 같은 곳에서는 약 3m 정도이다(사진 6). 제방 육비탈의 기습에는 호안 블록에 걸쳐진 형태로 토막이 말단 부분이 부풀어서 멀리 올라가 있고, 곳곳에서 분사가 발생되었다.

兵庫県이 관리하는 하천에서 현저한 피해를 입은 곳은 武庫川과 西島川이라고, 그 외, 시내를 흐르는 도시하천인 西桝川, 鹽屋川, 宇治川 등에서도 피해가 발생하였다.

4. 武庫川

武庫川에서는 하구에서 약 2.5km에서 상류의 약 6km 구간의 좌우안에서 제방의 피해가 발생하였다. 이중 특히 피해가 컸던 것은 피해 구간의 상류부근을 횡단하는 東海道新幹線의 교량 부근의 좌우안으로, 교각의 붕괴, 제방의 균열이나 침하 등이 발생하였다. 먼저, 사진 7에 보인 것 같으
新幹線의 교각이 좌굴되어 교량으로서의 기능을 상실하였다. 또한, 고수부에는 사건 8에 보인 것 같이 깊이 약 90cm에 달하는 균열이 생기고 하천 재방에는 사건 9와 같이 획일 균열이 생겼으며, 이 균열은 비탈 기슭에서 시작되어 비탈면 전체에 걸쳐 독마루면까지 이르고 있다.

⑤ 中島川(濁川의 지천인 神崎川의 피천)
中島川은 濁川의 북쪽 약 2km를 흐르며, 濁川과의 사이에 흐르는 神崎川과는 하구에서 3km의 지점에서 나누어 진다. 中島川에는 3면을 콘크리트로 덮은 萬層堤防이 있는데, 이 계방의 우안이 큰 피해를 입었다. 이 부근은 제내지의 지반고가 낮은 분, 콘크리트계의 계방에 생긴 균열을 통하여 수수가 발생하였다. 사진 10은 뷔찰 경사의 균열 상황을 나타낸 것이다. 경사면의 중앙부에 중간 균열을 볼 수 있으며, 또 계방의 비탈면 기슭 부근에도 균열이 다수 있다. 한편, 사진 11은 그 계방에 인접한 공장 부지의 아스팔트면이 붕괴된 음자 긴 균열이 생긴 상황을 보여 주고 있다. 한편, 中島川의 계방은 과거 3회에 걸쳐 계방 단장기를 하였고, 최상부는 흙벽(parapet)이 마을 막돌로 지지되어 있는 구조를 가지고 있다. 그런데, 계체의 화이 지진 진동에 의해 하천폭과 제내지로 밀려 내려왔기 때문에, 독마루 하부에는 약 50cm 정도의 밑연이 생겼다. 사진 12는 독마루의 뷔찰폭에서 줄지어 상황을 확인한 것이다. 또한, 계방의 독마루공은 지지 막돌과 결합되어 하천 폭으로 이동하였기 때문에 막돌의 하천폭은 홀이 부분에 올라가 있고, 반대로 뷔찰폭에서는 구멍이 생긴 상황을 볼 수 있었다.

⑥ 기타
고오베 시내에는 西緑川을 비롯하여 도로 밑에 건설된 다수의 암회 하천이 있고, 그 대다수는 개착 박스 구조로 되어 있다. 지진에 의해 이들 하천의 콘크리트 연결부가 파손되거나 구멍이 뚫리거나 했다. 북쪽에 위치한 지역에서는 이 영향이 상부의 도로에까지 나타나기도 했다.
또한, 萬山郡川 방수로는 NATM 공법에 의해 건설된 적정 4.6m의 터널 하천인데, 방수로 주변의 지층이 변화하는 지점(横尾山 단층)에서 콘크리트의 피해가 발생하였다. 손상은 콘크리트의 전체에 걸쳐 있고, 최대 10cm의 균열을 보였다.
한편, 사진 13에서는 宇治川에서는 하천 도로가 붕괴되어 있는 모습을 볼 수 있고, 新秦川에서는 계방에 큰 균열이 생기기도 하였다(사진 14).

4. 맺음말
토목연구소의 관계자는 피해의 주요 양상을 제방의 경우 제방 재료의 약화에 그 원인을 찾고 있다. 예를 들어, 그림 3은 西緑川 지구 1.4km 지점의 좌안제방의 파괴 상황을 보여 주고 있다. 지면에서 약 10m 깊이의 계방 기초부가 분해되어 해체되어 있는 이 계방은 지진에 의해 기초부에 약화 현상이 발생하여 해체가 무너져 내리고, 이에 따라 해체를 막고 있던 콘크리트 구조물이나 파폭 등이 붕괴된 것을 잘 나타내고 있다. 이런 현상은 사진 1과 사진 2에서도 잘 알 수 있다. 이에 수반하여 계내지에 분산 현장(사진 3)과 수수 등이 부차적으로 발생하였다. 또한 도시 하천이나 암회 하천 등은 지진의 진동에 의해 콘크리트의 연결부, 콘크리트 폭부 등에 균열, 단차 등이 발생하고, 계방에 인접한 도로 등이 붕괴하였다.
지진 발생 후 토목연구소에서는 그 원인을 분석하고 사후 대책을 여러 가지로 논의하였으나, 하천 시설물의 설계 기준의 변경이나 보강 방법 등에 대해서는 아직 논의한 결과를 찾지 못하고 있다. 이 부분에 대해서는 추후 연구의 진행을 지켜 보아야 할 것이다.
한편, 우리 나라에서는 이런 대지진이 일어날 가능성이 적은 까닭에 지진에 대한 대비책을 군이 강구할 필요는 없는 것으로 보이나, 하천 전문가로서 ‘지진이 과반 하천 시설물에 어떤 피해를 입히는가’에 관심을 가질 필요는 있을 것이다.
謝辞： 자료와 사진 등을 제공하여 준 토목연구소 하천부의 中尾 하천부장, 山本 하천총괄관리연구관, 宇多 하천연구실장, 末次 주임연구원 등에게 감사드린다.
사진 1. 여유 본류 좌안 0.2~1.8km

사진 2. 여유 본류 좌안 0.2~1.8km

사진 3. 떨내의 훅까 현상

사진 4. 여유 본류 우안 1.2~2.0km
사진 5. 猪川의 지류 藤川 우안 0.0km
사진 6. 互川의 東海道 新幹線 고량의 피해 상황
사진 7. 武庫川 고수부의 봉입
사진 8. 宇治川 계방의 봉위