Factors Affecting Thermal Inactivation and Reactivation of Korean-Radish Peroxidase

Kyung-Ah Lee, Jung-Min Hong, Gi-Nahm Kim and Inshik Park

Dept. of Food Science and Nutrition Dong-A University, Pusan 604-714, Korea.

Abstract

Factors affecting thermal inactivation and reactivation of korean radish peroxidase were investigated. The enzyme was stable below 60°C, but it was completely inactivated by heat treatment at 80°C for 10 min. The enzyme was stable at pH 6.0, but it was unstable below pH 4.0 and above pH 8.0. The thermostability of the enzyme was increased by addition of glucose, sodium chloride and albumin. The inactivated enzyme by heat treatment was reactivated at room temperature. The optimal pH for reactivation of the enzyme was pH of 9.0. The reactivation rate of the enzyme was not affected by addition of glucose, sodium chloride and albumin. The reactivation was completely inhibited by addition of sulfhydryl reagent such as dithiothreitol.

서 론

식물성 식품을 냉동 또는 냉장 보존하기 전에 미리 열처리를 하여 식물성 식품의 변색 또는 향미상실을 일으키는 lipase, lipoygenase, catalase, 및 peroxidase를 불활성화시켜야 하며, 특히 이들 중 가장 내열성이 강한 peroxidase를 불활성화시키는 것이 목표이다. 열처리에 의하여 peroxidase의 활성을 완전히 불활성화하지 않을 경우, 냉동, 냉장은도에서도 잔존한 효소의 작용으로 식품의 변색 또는 향미상실의 원인이 되고있다1-2). 따라서 peroxidase의 불활성화가 식품보존을 위한 열처리의 적합여부의 주요한 지침으로 사용되고 있다3). 또한 peroxidase는 열처리에 의하여 불활성화된 후 재활성화된다고 보고되었다4-8). Peroxidase의 활성은 한국산 무우 (Raphanus sativus)에서 매우 높으며, 또한 그 효소적 특성이 최근 밝혀진 바 있다9,10).

본 실험에서는 한국산 무우 peroxidase의 열안정성에 미치는 온도, 염, 당 및 단백질의 점가 영향을 검토하고, 또한 열처리 후 재활성화되는 과정을 조사하였다.

실험재료 및 방법

실험재료

본 실험에 사용한 무우는 부산지방에서 배달한 대량으로 있고, 과산화수소와 phenol은 Junsei사 제품을, 4-aminoantipyrine는 Sigma사 제품을 사용하였다.

조효소액의 조제

한국산 무우 100g에 100ml의 종류수를 점가한 후에 mixer로써 1분간 분쇄한 다음 cheese-cloth로
2번 여과하였다. 여과액을 다시 3,000 rpm에서 30분간 원심분리한 후, 그 상층액을 조효소액으로 하였다.

Peroxidase 활성도의 측정
Peroxidase 활성도 측정을 위한 반응액의 최종 농도(μmole)는 potassium-phosphate 양충액 (pH 6.5), 280: 4- aminoantipyrine, 3.5; phenol, 238였다.

효소 반응액은 60℃에서 2분간 방치 후, 2.55 μmole의 과산화수소와 효소액(50μl)을 정가한 후 60℃에서 1분간 반응시켰다. 효소 반응액의 온도에는 3mW였으며, 효소반응후에 spectrophotometer를 이용하여 510nm에서 흉광도의 증가를 peroxidase의 효소활성으로 측정하였다[11].

결과 및 고찰
효소의 열안정성에 미치는 온도효과
한국산 무영로부터의 peroxidase의 열에 의한 불활성화 정도를 조사하기 위해 온도 55℃에서 80℃까지 변화시켜 각 온도에서 효소의 불활성화 정도를 조사하였다(Fig. 1). 30분의 열처리에 의해 효소는 60℃이하에서는 안정했으며, 70℃에서 약 60%의 활성이 남아 있었으나, 80℃에서 10분 이내에 완전히 효소가 불활성화되었다.

효소의 열안정성에 미치는 pH의 효과
Peroxidase의 열에 의한 불활성화 정도가 효소의 pH 변화에 따라서 영향을 받는지를 조사하기 위해서 효소액의 pH를 3에서 10까지 변화시켜서 75℃에서 5분간의 열처리 후 남아있는 효소활성을 조사하였다(Fig. 2). 온충용액(0.1M)은 pH3 은 Na-glycine, pH 4~5는 Na-acetate, pH 6~8은 Na-phosphate, pH 9~10은 Na-borate를 사용하였다.

Fig. 2에서 보는 바와 같이 효소는 pH 6.0에서 가장 안정했으며, 산성 및 알칼리성 pH에서는 비교적 빠르게 효소가 불활성화 되었다.

효소의 열안정성에 미치는 당, 염 및 단백질의 첨가효과
Peroxidase가 함유되어 있는 식물성 식품을 열처리하는 경우에, 당, 염 및 단백질이 식품 자체에 함유되어 있든지 또는 외부에서 첨가하는 경우가 많다. 따라서 당, 염 및 단백질이 한국산 무영 peroxidase의 열안정성에 미치는 효과를 조사하였다. 효소액에 glucose, NaCl 및 albumin을 각각 0.5M, 0.5M 및 1.0%가 되도록 정가한 후에 80℃에서 5분간 열처리하였다. 열처리 후 잔존한 peroxidase의 활성을 조사한 결과 당, 염 및 단백질의 첨가는 무영 peroxidase의 열안정성을 증가시켰다(Table 1). 당, 염 및 단백질의 보호효과는 이들이 효소액에 존재하는 H2O를 수하함으로써,
Table 1. Effect of glucose, NaCl and albumin on thermostability of Korean radish peroxidase

<table>
<thead>
<tr>
<th>Addition</th>
<th>Absorbance (510nm)</th>
<th>Relative activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before heat treatment</td>
<td>0.71</td>
<td>100.0</td>
</tr>
<tr>
<td>After heat treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0.18</td>
<td>25.3</td>
</tr>
<tr>
<td>NaCl(0.5M)</td>
<td>0.23</td>
<td>46.5</td>
</tr>
<tr>
<td>Glucose(0.5M)</td>
<td>0.23</td>
<td>32.4</td>
</tr>
<tr>
<td>Albumin(1.0%)</td>
<td>0.20</td>
<td>28.2</td>
</tr>
</tbody>
</table>

The enzyme solution (pH 6.0) was incubated at 80℃ for 5 min, and the residual activities were measured as described in Methods.

Fig. 3. Effect of pH on reactivation of Korean radish peroxidase.
Experimental conditions were described in text.

Table 2. Effect of glucose, NaCl and albumin on reactivation of Korean radish peroxidase

<table>
<thead>
<tr>
<th>Addition</th>
<th>Absorbance (510nm)</th>
<th>Relative activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.56</td>
<td>100.0</td>
</tr>
<tr>
<td>NaCl(0.5M)</td>
<td>0.58</td>
<td>103.6</td>
</tr>
<tr>
<td>Glucose(0.5M)</td>
<td>0.54</td>
<td>96.4</td>
</tr>
<tr>
<td>Albumin(1.0%)</td>
<td>0.56</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The enzyme solution used was prepared as described in Fig. 3. For reactivation of the enzyme, it was incubated at 35℃ for 24 hrs.
Fig. 4. Effect of dithiothreitol on reactivation of
Korean radish peroxidase.
The enzyme solution was incubated at 75
°C for 10 min, and then 0.1 mM dithiоthreitol
was added.
(●) : dithiothreitol added. (○) : control.

에 의해 거의 영향을 받지 않았다. 열에 의해 불활
성화된 효소는 환원체인 dithiothreitol의 전가에
의하여 재활성화가 이뤄졌다.

문헌

1. Reed, G. : Oxidoreductase. Enzymes in Food
(1975)
to food flavor and quality: A Review. J. Food
Sci., 42. 1(1977)
3. Williams, D., Lim, M., Chen, A., Pangborn, R.
and Whitaker, J. : Blanching of vegetables for
freezing : Which indicator enzyme to choose.
Food Technology 40(6), 130(1986)
rates of heat inactivation and reactivation of
horseradish peroxidase. J. Food Sci., 39.
1173(1974)
5. Tamura, Y. and Morita, Y. : Thermal denatu-
ration and regeneration of Japanese-radish
peroxidase. J. Biochem., Tokyo, 78. 561(1975)
6. Schwimmer, S. : Regeneration of heat-inacti-
vated peroxidase. J. Biol. Chem., 154. 487
(1944)
of thermal inactivation and the regeneration
rates of a peroxidase system. J. Food Sci., 27.
587(1962)
8. Zoueil, M. and Esselen, W. : Thermal destruc-
tion rates and regeneration in green beans
and turnips. Food Research, 24. 119(1959)
9. Yoo, W. and Kim, S. : Purification and charac-
terization of anionic isoperoxidase from Ko-
(1988)
radish peroxidase by dithiothreitol. Korean
Freehold, New Jersey(1988)
12. Scopes, R. : Protein Purification, p. 199. Sprin-
ger-Verlag, New York(1982)

(1990년 3월 30일 접수)