Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for 150~200W_e class solid oxide fuel cell. The reformer was operated in the O_2/C range between 0.6 and 0.8 while the capacity was fixed at 150W_e. The temperature range in catalyst bed was between 500℃ and 900℃. Only 83% fuel was converted to H_2, CO, CO_2 and CH_4 at the operating conditions. The lowest temperature increase to 700℃ when the reformer was operated at 200W_e. Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

Acknowledgment : This research was supported by the promotion project of the lead industry for great-sphere economy of Daegu-Kyungbuk and the projects of the development program of Core Technologies for Fuel Cells (CTFC) of the Ministry of Knowledge Economy.

Key words : Transportation fuels, Diesel, Gasoline, Partial oxidation, Reforming

E-mail : *sangho09@kaist.ac.kr, **jmbae@kaist.ac.kr

Effect of Chemical Activation on Electrochemical behaviors of Ni-loaded Graphite Nanofibers

In this study, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH reagent. The effect of A-GNFs on the surface and textural properties of Ni-loaded graphite nanofibers (Ni/GNFs) was investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET). The textural properties of samples were investigated by N_2/77K adsorption isotherms. The electrochemical performances were investigated by cyclic voltammetry. As a results, the electrochemical performances of Ni/GNFs were improved with usage of A-GNFs. This could be interpreted by the high specific surface area and large total pore volume of the A-GNFs.

Key words : Activated graphite nanofibers, Chemical activation, Surface and textural properties, Ni-loaded, Electrochemical performance

E-mail : *yhm1808@naver.com, **sjpark@inha.ac.kr