Vibration Reduction of Electric-powered Hand Grinder

Sung Jin Cho and Yeon Sun Choi

Key Words : Electric Hand Grinder(전동 핸드그라인더), Modal Analysis(모드 해석), Rotor Dynamics(회전체역학), Structure Modification(구조 변경), Bearing Cap(베어링 캡)

ABSTRACT

Vibration of electric-powered hand grinder comes from the parts of motor, gear, bearing, and fan. Excessive vibration can be harmful to workers. To reduce vibration of a hand grinder we analyzed the frequency components from the running electric-powered grinder and did modal test to find the natural frequencies of the each part. It shows that the vibration is due to the resonance of the case. To remove the resonance, the case structure is modified and the bearing cap is replaced on a basis of the results from the rotor dynamic analysis using SAMCEF. As a result the vibration of the hand grinder is reduced greatly.

1. 서 론

핸드그라인더를 이용한 작업 시 공구에서 발생하는 진동 및 충격은 작업자의 작업 효율을 감소시킬 뿐만 아니라 장 기간 노출 시 혈관계, 신경계, 근골격계에 질환, 혹은 손상 을 유발하는 것으로 알려져 있다. 전동량이 큰 핸드그라 인더를 3년 이상 사용하게 되면 작업 중상이 발생하고, 전 동 작동 기간에 장기화될 경우 손의 혈관이 빠져 들어가는 백수증(white hand disease)에 이른다는 보고도 있다.

본 연구에서는 이와 같은 문제를 인지하는 핸드그라인더 의 파져 진동을 분석하기 위해 A사 핸드그라인더의 전동 을 ISO 2372의 회전기계의 진동기준과 Bachmann & Ammann(1)가 제시한 인체에 유해한 진동기준과 비교하였 다. 운전 중인 핸드그라인더의 케이스에서 측정한 진동 신호에 대해 TDA, ODS 분석, 주파수 분석을 통해 분석하였 고, 모드해석을 통해 각 부품이 가지고 있는 고유주파수를 찾고 핸드그라인더의 모터, 기어 등에 발생하는 주파수 성 분을 비교하여 공진 발생 여부를 검토하였다. 또 SAMCEF(4) 소프트웨어를 사용하여 회전자를 저장하고 있는 베어링 캡의 강성이 따른 핸드그라인더 압착에 대해

한 회전체역학 해석을 하였다. 이상의 과정을 통해 진동의 원인을 밝히고 핸드그라인더 케이스의 구조 변경과 베어링 캡의 재질 변경을 통해 진동을 저감시켰다.

2. 핸드그라인더의 진동

A사의 핸드그라인더의 진동과 ISO 2372의 회전기계의 진동기준 및 Bachmann & Ammann가 제시한 인체에 유해한 진동기준을 비교하였다. 측정한 제품을 작동 후 파도상 데가 지나도록 충분한 시간이 경과 후 정상상태에서의 진 동을 측정하였다. Fig. 1은 전동을 측정하기 위해 가속도 센서를 부착한 전동 핸드그라인더이다.

* 정희원, 성균관 대학교 기계공학과 대학원
** 정희원, 성균관 대학교 기계공학과
E-mail : yschoi@yurim.sku.ac.kr
Tel : (031)1290-7440, Fax : (031)1290-5849

Fig. 1 Locations of accelerometers
가속도 측정 결과 A사 헬드그라인더 진동의 평균은 130 dB로 ISO 2372의 회전기계의 진동기준인 120 dB, Bachmann & Ammann가 제시한 인체에 유해한 진동기준인 100 dB보다 큰 것으로 나타났다.

이상의 시간영역에서의 분석은 측정 부위의 진동 크기는 비교할 수는 있으나 진동원을 파악하는 것은 불가능하다. 이 경우 주파수 영역에서 제품의 진동을 비교해보면 진동 특성이 진동원을 추정해 볼 수 있다.

헬드그라인더의 주파수 분석에 앞서 그라인더에서 발생 가능한 가진 주파수 성분을 계산하였다. A사 헬드그라인더의 경우 공급 전원이 220V일 때 구동부의 회전속도는 42000 RPM이다. 구동부의 회전속도를 기준속도로 하여 모터, 기어, 엔진에 의해 발생하는 주파수 성분을 계산할 수 있다.

Table 1은 계산식에 의해 계산된 주파수를 나타낸 것이다. 이 주파수를 참고로 각 제품의 주파수 분석을 실시하였다. Fig. 2는 제품에 대해 파워 스펙트럼을 나타낸 것이다. A사 제품은 700 Hz의 모터 회전 주파수 성분이 나타난다. A사 제품은 모터 성분 외에도 200 Hz 성분의 헬 드 재 주파수, 2000 Hz 성분의 기어 물림주파수, 7000 Hz 대의 고주파 성분이 나타나고 있다.

Fig. 2 Power spectrum

Table 1 Frequency components

<table>
<thead>
<tr>
<th>성 분</th>
<th>주파수 성분</th>
</tr>
</thead>
<tbody>
<tr>
<td>모터 주파수</td>
<td>700 Hz</td>
</tr>
<tr>
<td></td>
<td>1400 Hz</td>
</tr>
<tr>
<td></td>
<td>2800 Hz</td>
</tr>
<tr>
<td></td>
<td>8400 Hz</td>
</tr>
<tr>
<td>기어 물림 주파수</td>
<td>2200 Hz</td>
</tr>
<tr>
<td>펜 주파수</td>
<td>25200 Hz</td>
</tr>
<tr>
<td>헤드사전 주파수</td>
<td>200 Hz</td>
</tr>
</tbody>
</table>

3. 모드 해석

헬드그라인더에서는 모터 회전 주파수, 기어 물림주파수, 펜의 회전주파수 등 여러 주파수 성분의 진동이 발생한다. 모터 주파수는 헬드그라인더의 가진 주파수로 볼 수 있으나, 각 부품의 고유진동수와 일치할 경우 공진을 일으키게 된다. 특정 부품의 공진은 소음과 진동도 크게 상관 없기 때문에 고정된 바가 없기 때문에, 따라서 헬드그라인더의 각 부품의 주파수 성분은 분석하여 각 부품의 공진 발생 여부를 분석하여 각 부품의 주파수 성분을 숫자 화 업으로 하여 각 부품의 고유진동수를 찾아야 한다. 이러한 주파수 분석을 위해서는 먼저 각 부품의 고유진동수를 알아야 한다.

본 연구에서는 각 부품의 고유진동수와 모드형상을 알아내기 위해서 각 부품에 대한 충격실험을 하였으며, SMS 소프트웨어를 사용하여 고유진동수와 모드형상을 구하였다.

각 부품의 고유진동수를 얻기 위해서는 각 부품에 모터 성분 외에 모든 모터로 가진주파수 주파수 동일함수 확장 고전장수(curve fitting)를 하여 모델 파라메터를 구하였다. 이 경우 충격데이터(impact hammer)를 사용하여 모델의 범위 외 주파수 가전이 가능하므로 고유진동수를 찾는데 효과적이다.

SMS 소프트웨어에서 각 부품의 형상을 기하학적으로 표현할 수 있도록 보정된 후 측정 포인트 순서대로 충격실험을 하였다. 측정 방법은 한 포인트에서 가진하고 여러 곳에서 응답을 측정하는 방법과 이와는 반대로 여러 곳을 가진하고 한 포인트에서 응답을 측정하는 방법이 있으나 상반정리(reciprocal theorem)에 의해 해석결과 상의 차이는 없다. 본 연구에서는 실험의 편의를 위해 확정된 방법을 선택하였다. Fig. 3은 충격실험을 도식적으로 나타낸 것이다. Fig. 4와 5는 충격 심혈용 헬드그라인더 부품들의 사진과 SMS 소프트웨어를 사용하여 모델링한 그림이다. 충격실험에서 응답을 측정하는 센서로는 B&K 압축형 가속도계를 사용하였다. 분석기로는 CF-330 ONOSOKI FFT Analyzer를 사용하였다. 결과의 영향을 줄이고 측정된 FRF의 신뢰성을 높이기 위해 16번 측정하여 평균값을 내었다. 충격실험 후 측정된 FRF로부터 각 부품의 고유진동수와 모드형상을 구하기 위해 SMS 소프트웨어를 사용하였다.

충격실험으로부터 측정된 FRF와 SMS 소프트웨어의 모드 해석을 사용하여 각 부품의 모델 파라메터를 구하였다. 위와 같이 모드 해석을 하여 각 부품의 고유진동수와 모드형상을 분석한 결과 케이스의 4차, 6차 고유진동수가 모터 주파수 및 기어 물림 주파수와 근접함을 알 수 있었다.

Fig. 6은 앞의 모드해석을 통해 분석된 4차, 6차 고유진동수에서의 진동 형상을 보기가 위해 SMS 소프트웨어를 사용하여 모드형상을 구한 것이다. 그림에서 보는 바와 같이 고유진동수에서 케이스의 앞부분이 상대적으로 진동하는 형상
을 볼 수 있다.
즉, A사 핸드그라인더 진동의 주된 원인은 회전 주파수 성분과 케이스의 고유진동수와 일치함으로써 발생하는 공진에 의한 것임을 알 수 있다. 따라서 케이스의 구조 변경이 요구되며, 구조 변경으로 가진 주파수와 일치하는 고유 진동수를 변화시킴으로써 공진에 의한 진동을 저감시킬 수 있다.

![Fig. 3 Schematic diagram of impact test](image)

<table>
<thead>
<tr>
<th>부품명</th>
<th>Natural frequency</th>
<th>Exciting frequency</th>
<th>성 분</th>
</tr>
</thead>
<tbody>
<tr>
<td>케이스</td>
<td>1442 Hz</td>
<td>1418 Hz</td>
<td>모터 주파수</td>
</tr>
<tr>
<td></td>
<td>2230 Hz</td>
<td>2200 Hz</td>
<td>기어통 림 주파수</td>
</tr>
</tbody>
</table>

Fig. 6 Operational deflection shape at natural frequency

4. 구조 변경

핸드그라인더의 경우 케이스의 공진이 확인되었으므로 이 경우 케이스의 고유진동수를 변화시킴으로써 진동을 줄일 수 있다. 가진 주파수와 공진 주파수가 일치하지 않도록 절링, 강성, 변화 시키는 것이다. 이와 같은 문제는 시제품을 만들고 실험을 하는 것과 같이 시험작업을 반복하여 해결할 수 있으나, 이는 시간, 재료, 원가 등에서 소모가 크다. 그러나 컴퓨터를 이용해 구조 변경을 할 수 있고, 여러 번 시험작업을 통해 적절한 모델 변경이 가능하다.

본 연구에서는 SAMCEF 소프트웨어(7)를 사용하여 구조 변경에 따른 케이스의 변화된 고유진동수와 모드 형상을 예측하였다. 핸드그라인더의 케이스가 공진하는 4차, 6차 모드에서 응력이 집중되는 곳에 강성을 보강하여 Fig. 7과 같이 구조 변경을 하였다.

![Fig. 7 Modification of the case](image)

(a) Original case (b) Modified case
5. SAMCEF를 이용한 최전체 역학 해석

5.1 핸드그라인더 모델

비어링을 감싸고 있는 베어링 캔의 상단에 따른 키어스로의 진동 전달 영향을 분석하기 위해 SAMCEF 최전체 역학 해석을 수행하였다. Fig. 9의 (a)는 핸드그라인더의 구조를 나타낸 것이고 (b)는 핸드그라인더를 SAMCEF 소프트웨어를 사용하여 두 축이 기어로 물려있는 방향으로 모델링 한 것이다.

실제 핸드그라인더의 조건과 같게 하기 위해 기어비는 11/39로 모델링 하였고 주축은 42000 RPM으로 회전시켰으며, 베어링은 608 플베어링으로써 그 경성을 구는 $k = 9.47 \times 10^7 N/m$을 사용하였다. 또 베어링 캔을 2번 베어링의 x, y축에 스프링과 댕퍼로 모델링 하였으며 키어스를 스프링과 댕퍼 끝에 강재로 모델링 하여 회전 시 강세로 전달되는 진동량을 분석하였다.

Fig. 9 (b)의 범 모델이 실제 시스템의 해석에 적용 가능 한지 확인하기 위해 주축의 2번 베어링의 위치에서 SAMCEF를 통해 얻은 변위와 실험 결과를 비교하였다.

Fig. 10에서 보는 바와 같이 주축의 회전속도가 42000 RPM일 때 실험을 통해 측정한 변위의 평균은 0.43 mm이고 SAMCEF 소프트웨어를 통해 얻은 변위의 평균은 0.4 mm로 두 회전축의 변위가 유사함을 볼 수 있다. 그러므로 Fig. 9의 (b) 모델은 실제 핸드그라인더 시스템의 진동 해석에도 적응 할 수 있을음을 확인하였다.

Table 3 Modified natural frequencies of the case

<table>
<thead>
<tr>
<th>고유 진동수</th>
<th>수정 전</th>
<th>수정 후</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>925 Hz</td>
<td>902 Hz</td>
</tr>
<tr>
<td>2nd</td>
<td>1237 Hz</td>
<td>1057 Hz</td>
</tr>
<tr>
<td>3rd</td>
<td>1350 Hz</td>
<td>1326 Hz</td>
</tr>
<tr>
<td>4th</td>
<td>1425 Hz</td>
<td>1566 Hz</td>
</tr>
<tr>
<td>5th</td>
<td>1537 Hz</td>
<td>1763 Hz</td>
</tr>
<tr>
<td>6th</td>
<td>2262 Hz</td>
<td>2547 Hz</td>
</tr>
</tbody>
</table>

Table 3은 변화된 고유진동수를 나타낸 것이다. 가진 주파수와 고유진동수의 일치하지 않게 하기 위해 프로그램 상에서 여러 번의 시험을 거쳐 위와 같은 구조변경을 하였다. 4차 고유진동수는 1425 Hz에서 1566 Hz로 높아졌고, 6차 고유진동수는 2262 Hz에서 2547 Hz으로 변화되었다. 고유진동수 변화량은 작으나 시뮬레이션 결과 Fig. 8에서 보는 바와 같이 핸드그라인더의 앞부분과 뒷부분의 진동이 평균 80m/s² 증가하였음을 확인할 수 있었다.

(a) Schematic diagram of hand grinder

(b) Beam model

Fig. 9 Structure of hand grinder
5.2 진동 해석

베어링 캡의 역할은 회전자의 진동을 케이스에 전달하는 것을 감쇄해 주는 역할을 하고 있으며 또한 분진이 베어링에 침투되는 것을 막아 주는 역할도 하는 부분이다. 따라서 베어링 캡의 강성을 조절하면 본연의 기능인 진동전달 감쇠 성능이 향상될 수 있을 것으로 판단된다. 베어링 캡의
강성에 따른 케이스의 진동 전달 양을 분석하기 위해
SAMCEF 소프트웨어로 모델링 된 Fig. 9의 (b)모델을 활용하였다. 베어링 캡의 강성이 $k = 4 \times 10^7 N/m$ 일 때
강성이 $k = 4 \times 10^5 N/m$ 일 때 2번 베어링에 있는 강제
외부를 비교 분석해 보았다.

Fig. 10는 베어링 캡의 강성에 따른 강체의 변위를 나타낸 것이다. 분석 결과 강성이 $k = 4 \times 10^7 N/m$ 일 때 평균 변위가 0.4 mm이고 강성이 $k = 4 \times 10^5 N/m$ 일 때
0.15 mm로 베어링 캡의 강성이 작아질수록 변위가 작아지는데 나타났다. 즉 베어링 캡의 강성이 작을수록 진동의 전달이 적은 것을 알 수 있다. 이를 근거로 베어링
캡의 강성을 낮춤으로써 케이스의 진동 전달을 기존대비
1/3 낮출 수 있을음을 확인하였다.

5.3 임계 속도 해석

회전체 시스템의 설계에서 동역학적 해석의 주된 목적
은 임계속도의 영향을 파악하는 것이다. 회전체의 고유진동수
와 임계속도와의 일치로 시스템이 급격히 진동을 일으키게
된다면 제품의 파손 및 오작동뿐만 아니라 그것은 사용하
는 사람에게도 악영향을 미칠 수 있다. 따라서 이에 대한
전 해석을 통하여 운전속도와 임계속도와의 분리 여부를
최소 20%이상 가는 것이 정상적이다. 본 연구에서는 이러
한 임계그라인더 회전자의 회전속도와 임계속도를 비교 분
석하기 위해 SAMCEF 소프트웨어를 사용하여 임계속도분
석을 수행하였다. Fig. 11의 회전자의 회전속도가 0 RPM에
서 42000 RPM까지 증가 할 때 범 로터(beam rotor) 모델
의 캠벌 선도(Campbell diagram)를 나타낸 것이다. Table 4
는 캠벌 선도를 통해 구한 임계속도를 나타낸 것이다. 헨드
그라인더의 회전자가 42000 RPM으로 회전하고 분리 여유
를 20%로 생각한다면 33600 ~ 50400 RPM에 해당하는 영
역에서는 임계속도가 나타나지 않아야 한다. 분석결과 헨드
그라인더 회전자의 임계속도와 회전속도와의 일치되는 점
은 없었다.
Fig. 12 Campbell diagram

Table 4 Critical speed

<table>
<thead>
<tr>
<th></th>
<th>임계 속도</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>23320 RPM</td>
</tr>
<tr>
<td>2nd</td>
<td>26280 RPM</td>
</tr>
<tr>
<td>3rd</td>
<td>30660 RPM</td>
</tr>
</tbody>
</table>

6. Modified case 제작 및 진동 레벨 비교

SAMCEF 소프트웨어를 통해 수상된 핸드그라인더의 구조물 사이드 못을 제작하고 베어링 캡의 재질을 강화한 후, 약간의 고무로 교체, 조립한 후 압력에서 소거한 것과 같은 방식으로 각 포인트의 진동을 가속도 측정한 후 진동평가기준과 비교해 보았다. 전진히 각각의 진동평가기준에 미치지 못하나 A사 핸드그라인더의 진동 레벨이 개선한보다 5 dB정도 낮아졌다고 판정되었다. 이로써 핸드그라인더 회전 자 자체의 진동을 저감하는 연구가 이루어진다면 성능향상에 큰 효과를 기대할 수 있다.

7. 결론

A사의 핸드그라인더는 ISO 2372의 회전기계의 진동기준 및 Bachmann & Ammann가 제시한 인체에 유해한 진동기준에 비해 진동이 큰 것으로 판명되였고 진동의 원인분석을 위해 모드해석과 주파수 분석을 해 본 결과 케이스의 고유진동수와 구동 시 핸드그라인더의 가진 주파수 성분이 일치함으로 인해 발생하는 전진 현상이 주된 진동 원인임이 밝혀졌다. 또 각 포인트에서의 진동 주파수 분석 결과 회전자가 회전할 때 생기는 진동이 케이스의 모든 부분에 직접적으로 전달되는 구조를 가진 진동임이 밝혀졌다. 이와 같은 진동을 최소화하기 위해 케이스의 구조변경을 통해 공진 주파수를 변화시켰고 케이스와 베어링 사이에 있는 베어링 캡의 재질을 개선해서 회전자의 진동이 케이스로 전달되는 것을 최소화 하였다. 그 결과 핸드그라인더의 진동이 5 dB정도 낮아짐이 관찰되었다.

참고 문헌

(2) International Organization for Standardization, Mechanical Vibration of machines with operating speed from 10 to 200 rev/s - Basic for specifying evaluation standards, ISO 2372, 1974
(3) Bachmann, H. and Ammann, W., "Vibrations in Structures-Structural Engineering Documents," 1987
(7) "SAMCEF Field User Manual-3.1", Samtech International Inc., 2002