절량법칙을 이용한 연료펌프 특성을 저감 방법

Particular Noise Reduction Method used to Mass Law

강태식** 심재기**

Gang Jae Sik, Sim Jae Gi

Key Words : Fuel Pump(자동차연료펌프), Mass Law(절량법칙), Noise(소음), Vibration(진동)

ABSTRACT

High frequency noise of fuel pump has does claimed by user. But high frequency of fuel pump can’t heat in the car. But this noise is an offensive noise outside car. In this study is noise reduction used to mass law. Especially high frequency (for example BPF(blade pass frequency)) is influenced of this law. In detail used to transmission and add to mass according to mass law, reduced particular noise. As a result high frequency is down until can’t perception.

1. 서론

현재의 자동차는 단순한 운송수단이 아닌 생활의 필수품으로 자리고 자리가고 있다.
그래서 자동차는 안전성과 더불어 소음을 중요할 차량의 성능으로 판단한다. 특히 고가의 자동차가 출시되는 지금의 시대는 무엇보다 소음에 대한 문제가 크게 대두되고 있다.
자동차에 시동을 걸면 자동차의 ECU는 몇 초 동안 메인 릴레이를 작동시켜 연료 펌프를 동
리주고 일정시간이 지나면 메인 릴레이 전원을 끄어 연료 펌프 동작을 중단시킨다.
이러한 기능은 원활한 시동을 위하여 연료의 장압을 유지시키기 위해서이다. 또한 연료라인에 연료를 공급하여 압력은 일정하게 유지함으로서 시동을 걸었을 때 엔진의 부조를 막아주고 엔진이 기름을 때에는 엔진에 연료를 공급할 역할을 한다.
이렇게 자동차내의 연료펌프는 자동차에 연료를 공급하는 기본적인 기능이외에도 배터리(battery)에서 제어 먼저 전원을 공급 받아 구동 되므로, 운전자가 승객에게 제어 먼저 노출된다.
특히 작동 및 모든 승용차와의 연료펌프는 몇
자국 아래 연료펌프와 일체식으로 되어 있는 인
탱크(Infank)식이기 때문에 더욱 더 민감하게 운전자에게 소음을 전달된다.(1)
이번 논문에서는 고주파소음, 특히나 임파트가 통과하는 대역인 7KHz 대역의 소음을 감소시키고자 하였다.

이 영역의 소음의 특성을 파장이 짧아 차량의 실내에서는 시트(seat)에 차단되어 들리지 않지만, 차량 외부로 방사되는 소음이 큰 문제로 대두되고 있다.
연료펌프 안에 장착된 펌프는 외부로 바로 방사되기 때문에 현재 차단이 불가능하다.
그러므로 연료펌프 및 모듈상태에서 감소를 시키지 않는 이상, 그대로 외부로 방사되는 결과를 초래한다.
그래서 이 특징을 차단하기 위해 절량법칙을 사용하여 임펠라 주파수를 감소 시켰다.
이에 대한 방법으로 펌프 모듈에 절량을 부가하여 임펠라음을 감소시키고자 하였다.

2. 연료펌프 구조 및 소음발생 메커니즘

2-1 펌프 모듈 및 연료펌프 구조
연료펌프의 구조를 살펴보면 펌프는 Sender
gauge 와 filter 가 하나의 모듈로 제작되어 자동차 연료펌프에 부착된다.
Fig.1은 자동차에 사용되는 모듈화(Module)된 연료펌프 모듈을 보인다.
여기에는 센터게이지(Sender Gauge)라는 연료레
벨 게이지와 Pressure Regulator가 연료펌프와 일
체식으로 구성된 리턴리스 시스템(Returnless
System)이다.

* 현대산업
E-mail : trust88@hyundai.com
Tel : (041) 539-7318, Fax : (041) 539-7340
** 조선대학교 기전공학과

- 759 -
Fig.1 Scheme of Fuel Pump Module

Fig.2는 연료펌프 단품의 구조를 나타낸다. 연료펌프는 강한 회전력을 얻기 위해서 DC 모터를 채용하여 공기와 차폐된 연료 속에서 동작한다. 펌프의 하단에는 임펠러(Impeller)가 장착되어 회전력으로 연료를 어어갈(Air-gap)으로 숏출한다.

이 연료는 펌프외부에 설치된 체크밸브(Check valve)를 거쳐 연료라인으로 공급된다.

체크밸브(Check valve)는 키-오프(key-off)시 연료펌프(Fuel Pump)와 레일(Rail)간 연료의 양 및 압력 을 일정하게 유지시키는 역할을 한다.

연료라인에 문제가 발생하였을 때 액(액의 압력이 규정값 이상으로 올라갔을 때)는 펌프의 상단에 설치된 리리브밸브(Relief valve)가 열리 연료를 탱크내로 직접 순환시킨다.(2)

2.2 소음발생 메커니즘

연료펌프는 영구자석을 이용한 DC 모터를 사용한다. 아마추어(Armature)의 도선에 흘러오는 전류와 필드 자속의 상호작용에 의해 토크가 작동하여 아마추어(Armature)가 회전한다. (3)

그래서 필연적으로 전동기 자체에서 소음이 발생한다. 특히 엔진소음이 과거에 비해서 현저하게 감소되어 있었으며, 상대적으로 엔진을 작동시키는 key-on을 했을 때 연료펌프의 작동에 의해서 수음이 발생하여 고객의 불만을 사 왔다.

연료와 공기중의 음속이 다르기 때문에 공기중에는 극단적으로 과장이 퍼져지기 때문에 간섭발생이 심하고, 연료 중에는 이것이 없는 것이 큰 영향이라고 생각된다.

또 이소음에 의해 탱크 내부로부터 실차 전달 특성은 복잡하다.

자동차용 DC 모터는 내부에 회전자(Armature)와 고정자(Magnet)가 있는 전기체전동기로서, 그들 사이의 전자기력에 의해 구동되는 전기기계이다.

연료펌프의 기계적인 요인이 의한 모터의 진동은 심(1)과 같이 최진주파수의 배수성분으로 표현한다.

\[
F_n = \frac{kN}{60} \quad k: 정수 \quad N: \text{rpm} \tag{1}
\]

이 수식은 기본으로 범위 상 블록, 축 정렬부, 베어링 불량 등 기계적인 진동과, 회전자와 고정자 사이에 존재한 공극의 자속들이 불균형하여 발생하는 전기적 진동, 소음이 발생한다(3)

연료펌프에 의한 진동은 펌프 안의 모터로부터 진동이 연료펌프 안의 연료와 차 안의 공기 배설을 통해 실내로 전달되는 고유음(Structure-Borne Noise)에 기인한다.

만약에 연료펌프 rpm이 7200이라면 수식(1)에 의해서 7200/60인 120Hz에서 first order가 발생하고 이 후에는 그에 대한 하모닉(Hamonic)성분이 발생한다.

현재 양산되고 있는 연료펌프의 DC 모터는 정류자날이 8개이며 1차 최진주파수가 120Hz임을 감안하면 960 및 1920Hz에서 발생한다.

정류자와 브러시가 간섭하는 부분의 주파수 대역은 1KHz와 2KHz에 가까운 주파수이므로 사람에게 인명하하 고작용할 뿐만 아니라 고유음이므로 실제 차량의 연료탱크 안에 대해서도 전달되는 음이다. (6)(7)

마지막으로 아말레의 날개수가 47 매인 판계로 깃통과주파수(BPF: BLADE PASS FREQUENCY)가 5640Hz에서 발생한다.

3. 이론적 배경

(1) 이론적 배경
\[R_{TL} = 10 \log_{10} \frac{1}{|\tau|^2} \] \hspace{1cm} \text{(8)}

여기서 \(\tau \)는 투과계수를 나타낸다.
따라서 위 식으로부터 투과손실은
\[R_{TL} = 10 \log \left[1 + \left(\frac{wm}{2Z_0} \right)^2 \right] \] \hspace{1cm} \text{(9)}
와 같이 표현된다.

이는 투과손실은 2배 증가(1octave)함에 따라 6db씩 증가하며, 단위 면적 당 질량의 2배 증가(1octave)함에 따라 투과손실이 6db씩 증가한다는 의미를 지닌다.

위식은 매질의 입피던스에 의해 주파수나 질량의 값이 매우 크다고 가정하면
\[\frac{wm}{2Z_0} \gg 1 \] 이면
\[R_{TL} \approx 20 \log_{10} \frac{wm}{2Z_0} \text{ dB} \] \hspace{1cm} \text{(10)}

위식은 다시 투과손실이 0이 되는 주파수(\(f_b \))를 생각해보면
\[\frac{2\pi f_b m}{2Z_0} = 1 \] \hspace{1cm} \text{(11)}
그러므로 \(f_b = \frac{Z_0}{\pi m} \) \hspace{1cm} \text{(12)}

4. 실험

4.1 실험장치 구성
반 부합실 안에서 연료펌프를 연료탱크 안에 장착하여 상단에 마이크로폰을 위치하였다.
Fig.4에 간략적인 측정 캐릭토를 나타내었다.
마이크로폰은 연료펌프에서 발생되는 소음을 Pick-up 하여 주파수 분석기로 보내면 주파수 분석기에서는 고속 프리에 변환을 하여 그 결과를 컴퓨터에 나타낸다.
관심을 두고 있는 주파수가 고주파 영역이므로 0~10kHz 영역까지 조사하였다.
마이크로폰의 위치는 연료탱크 상방 10cm로 하여 측정을 하였다.
연료량에 따른 소음의 변화가 있기 때문에 이 실험에서는 연료량은 20L로 하였다.

실험수순은 먼저 절량 가중치를 부착하지 않는 경우와, 절량 가중치를 부착한 경우를 측정하여 비교하였다.

이 실험에 사용되는 절량가중치를 붙이는 위치는 filter ass'y 상단에 위치시켰다.

Fig. 5 에서는 이러한 절량 부착 위치를 도식적으로 나타내었으며 더 자세히 설명하면 연료탱크 모듈에서 Plate 를 제거한 후 여저필터 상단부분에 절량을 위치시켰다.

4-2 측정장비
이 실험에 사용된 계측기를 photo.2 에 나타내었다.

본 실험에 사용되는 장비 사양은 다음과 같다.

Table.1 Specification of test equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC 운영체제</td>
<td>Window NT 4.0</td>
</tr>
<tr>
<td>FFT</td>
<td>PULSE 4.2 (B&K)</td>
</tr>
<tr>
<td>Micro-phone</td>
<td>2669(B&K)</td>
</tr>
<tr>
<td>Front-End</td>
<td>TYPE 2825</td>
</tr>
</tbody>
</table>

5. 결 과

5.1 예상결과

절량법칙에 의하면 5640Hz 주파수를 저감 시키려면 1.5kg 을 붙였을 때 132/1.5kg=88Hz→176Hz→352Hz→704Hz→1408Hz→2816Hz→5632Hz 순으로 감소가 일어난다는 것을 알 수 있다.
그러나 본에 실험한 차량의 필프를 확인해본 결과 13.9W 에서 7100Hz 부근에서 BPF 가 발생하고 있다.
5.2 실험결과
Fig.6-Fig.7에서 나타난 결과와 같이 실험 그래프를 확인하여 보면 계산식에 의한 결과 18dB 아닌지만 주파수가 고투파음(BPF)이 10db 이상 줄어들었음을 확인하였다.

그러나 계산식에 의한 특정 주파수가 아니고 측정주파수 부근의 소음 피크점들은 모두 감소하였 다. 이것은 약간계산상 147g의 질량이 필요하더라도 150g의 절약을 부가하여도 동일한 결과를 얻을 수 있다는 것을 예상할 수 있다.

6. 결론
연료펌프 모듈에 질량증가체를 부착하여 특정 음을 줄이고자 하는 실험의 소음평가에서 다음과 같은 결론을 얻을 수 있었다.
1. 연료펌프 모듈에 질량증가체를 부착함으로 특정음은 줄이는 것이 가능하였다.
2. 특히 연료펌프의 BPF(것, 물과 주파수) 주파수인 경우에 소음 레벨이 크게 감소하는 결과를 나타내었다.
3. 특정음을 줄이고자 질량백합을 사용하면 특정음을 뿐만 아니라 그 부근의 음이 동시에 감소하였 다. 이것은 정확한 질량을 부가하지 않더라도 비슷한 질량을 부가하여도 동일한 효과를 얻을 수 있음을 예측할 수 있다.
4. 현재 자동차의 경량화 추세의 현실을 감안하면 질량백합을 사용하여 저주파 줄이는 것보다는 고주파를 줄이는 것이 적은 질량으로도 가능하여 향후 적용이 가능하다.

참고문헌
(1) 加藤 哲男, 磁石の世界, コロナ社, pp.106 - 107, 1999
(2) 투원정공, EFI 가솔린 Engine 응 연료펌프에 관한 기술개발, pp.10-20, 1992
(3) 김상진, 소형모터 제어, 성안당, pp.3-4, 2001
(4) Couji Umemura 와 2인, Study on Impeller Noise of In-yank fuel ump sound field characteristic in fuel pump, pp.1,413~1,416, 日本自動車技術 学術講演 會前編集 902,1990-10
(5) 차현준, 최연선, 6 시그마 프로세스를 이용한 소형작동모터의 소음절감, 소음진동공학회 2002 년 춘계대회논문집, pp.509~514
(6) 백수현, 소형모터 설계변화, 세화출판사, pp.727-739, 1988
(7) 天王吉 韓, 비라이트 자석회전기의 설계, 동일출판사 pp.35-40