Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method

Doo-Ho Lee and Woo-Seok Hwang

Key Words : Identification of Joint Parameter, FRF-based Substructuring Method, Optimization Technique

ABSTRACT

A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.

x_{rf} : 측정된 전체 구조물의 기준응답 벡터
Ψ : 추정지수(Identification Index)

1. 서 론

구조 해석 기술의 발전과 많은 범용 소프트웨어의 보급으로 유한요소법과 같은 수치 해석법은 진동/소음 시스템의 설계에 있어서 일반적인 도구가 되었다. 그러나 복잡한 구조물의 경우 유한요소법을 이용한 해석적인 방법으로 진동/소음 응답을 정확히 예측하는 것은 대단히 어려운 일이다. 이는 모델의, 기하학적 모양, 입력 하중, 경계조건 등의 부정확성을 기인한다. 특히 복잡한 구조물의 경우는 많은 부분 구조물로 이루어져 있고 이들 부분 구조물들이 복잡하게 연관되어 있는데 이들 부분 구조물 간의 연결상태, 즉 결합부 강성, 감쇠 등을 정확하게 기술하는 것이 정확한 해석 결과를 얻기 위해서 반드시 필요하다.

결합부의 특성을 추정하기 위해서 많은 연구들이 진행되어 왔다. 많은 연구자들은 구조물의 실험모델에 해석 결과를 바탕으로 전체 구조물의 유한요소 모델을 개선하여 시험값을 잘 표현할 수 있는 유한요소 모델을 구성하는 방법을 개발하였다(1-5). 이러한 방법들은 결합부의 강성을 추정하기
위해서 전체시스템의 시험 모달모델과 유한요소 모델을 구성해야 하며 복잡한 구조물의 경우 시험 모드 해석의 정확도가 낮아질 수 있으며, 유한요소 모델의 강성 및 접점행렬을 변경하여 시험 결과와 일치시키는 결과를 얻는지 실제 구조물과 수치 모델 사이의 물리적인 연관성이 사라질 수 있다는 단점이 있다.

한편으로 구조물의 시험데이터를 이용하여 결합부의 특성을 추정하는 연구가 활발히 진행되었다(6,12, 16). 시험데이터로서는 모드해석으로부터 나오는 모달 데이터와 주파수 응답함수(frequency response function)를 사용하는 방법이 있는데, 복잡한 구조물의 경우 모달 데이터의 정확도는 주파수 응답함수에 비해 상대적으로 떨어지며, 이를 얻기 위해서 많은 비용을 수반하므로 주파수응답함수를 이용하여 결합부의 특성을 추정하는 연구가 많이 진행되고 있다. 주파수응답함수를 이용하여 결합부의 특성을 추정하기 위해서는 일반적으로 전체 구조물의 측정된 주파수 응답과 각각의 결합부를 결합강성과 감쇠로 모델링 한 후, 계산한 전체 시스템의 주파수 응답이 동일해지도록 결합부의 강성과 감쇠를 결정한다. 주파수응답함수를 이용한 방법의 장점은 주파수응답함수는 복잡한 시스템에 대한 정확한 정보를 갖고 있고 측정이 쉽다는 것이다. Tsai(10)등은 두 구조물의 주파수응답함수로부터 결합부 물연의 특성을 추정하는 방법을 발표하였다. Wang과 Liou(7), Ren과 Beards(10), Ratcliffe과 Lieven(11)등은 주파수응답함수에 포함되는 노이즈를 고려하여 정확한 결합부의 특성을 추정하기 위한 연구를 발표하였다. 또, Hong과 Lee(8)는 측정된 주파수응답함수로부터 유한요소 모델을 이용하여 결합부의 특성을 분리하는 방법을 개발하였으며 Yang과 Park(9)는 필요한 주파수응답함수의 부분집합으로 결합부의 구조자료를 추정하는 반복적인 방법을 개발하였다.

부분구조합성법은 부분구조의 동선으로부터 전체 시스템의 동성을 표현하는 방법으로 모드함성법, 전달행렬함성법, 전달행렬합성법등으로 나뉘어진다. 그 중에서 주파수전달함수를 이용한 전달함성법(FRF-based substructuring method)는 FRF만으로 부분구조를 표현하며 정확한 정보를 이용할 수 있고 시험데이터나 유한요소모델로부터 얻은 FRF를 쉽게 할성할 수 있다는 이점이 있다. 저장 등(14, 15)은 전달함성법의 간단한 시스템에서 일반적인 설계변수에 대하여 설계조건도 해석을 수행하는 방법을 개발하고 이를 엔진마운트 설계에 응용한 바 있다.

\[x^i_t = \sum_{j=1}^{k} H^i_{kj} \cdot R^j_t + H^i_{ki} \cdot f^k \quad (1) \]

\(i = 1, \ldots, n, \ i \neq k \)

Fig. 1 A substructural system

본 논문에서는 다중전달함수 합성법의 체계화에서 설계매개값은 해석법을 이용하여 전체 시스템의 주파수 응답과 부분구조 모델의 응답 차이가 최소화되도록 최적값을 알아내는을 적용하여 구조물 결합부의 강성 및 감쇠를 추정하는 방법을 제시하고 보수계획을 통하여 방법의 효용성을 검증한다. 또한 최적화 과정시 사용되는 목적함수의 형태에 따른 추정 결과를 살펴보고 가장 적합한 함수형태를 검토한다.

2. 전달함수기반 다중 부분구조합성법

[Fig.1]과 같이 임의의 구조의 영역으로 이루어지고 서로의 영역은 강성을 갖는 스프링과 감쇠기로 연결된 다중(multi-domain) 부분구조시스템을 고려한다. 시스템의 응답을 계산하기 위한 위치 \(r \) 은 \(k \)-변체 부분구조에 위치하고 있다고 가정하며 각각의 부분구조에는 위치, \(f^k (k = 1, \ldots, n) \) 가 작용하고 있다.

관심 있는 기준응답을 전달함수기반의 부분구조합성법으로 계산하기 위해서는 우선 각각의 부분구조가 서로 연결되어 있는 결합부의 응답을 계산하는 것이 필요하다. 의뢰에 의해 발생된 에너지는 부분구조시스템의 결합부를 통해서만 전달되고 선형적인 시스템임을 가정하면 [Fig.2]와 같이 \(k \)-변체 부분구조에 위치한 \(i \)-변체 연결점의 응답, \(x^i \)는 중첩의 원리(superposition principle)에 의해서 다음과 같이 쓸 수 있다.

\[x^i_t = \sum_{j=1}^{k} H^i_{kj} \cdot R^j_t + H^i_{ki} \cdot f^k \quad (1) \]
여기서 \(H_y^j \)는 \(k \)-번째 부분구조에 위치하는 연결점 \(j \)를 단위 함으로 가진 힘을 때 연결점 \(i \)에서의 주파수 응답함수이고, \(R_i^k \)는 \(k \)-번째 부분구조의 연결점 \(j \)에서 \(j \)-번째 부분구조와의 결합 때문에 발생하는 힘이다. \(H_y^j \)는 \(k \)-번째 부분구조에서 작용하는 외력을 단위 힘으로 내재했을 때의 \(j \)-번째 연결점에서의 주파수 응답함수이다. 작용-반작용의 원리에 따라 두 부분구조 사이에 작용하는 결합력은 다음의 형평형식을 만족한다.

\[
R_i^k + R_i^j = 0, \quad i, k = 1, \ldots, n, \quad i \neq k \tag{2}
\]

많은 구조물의 연결부는 절연이 없는 등가의 강성을 갖도록 표현될 수 있다. 두 부분구조물의 강성을 갖는 스프링과 감쇠기를 연결되어 있다고 [Fig. 1]과 같이 가정하면 부분구조 간의 결합부에서는 다음과 같은 적합방정식(compatibility equation)이 성립한다.

\[
S_{u_i} \cdot R_i^k = x_i^k - x_i^j, \quad i, k = 1, \ldots, n, \quad i \neq k \tag{3}
\]

여기서 \(S_{u_i} \)는 결합부에서의 집플라이언스 계수들 을 행렬로 표기한 것이며 다음과 같이 대각행렬이 된다.

\[
\begin{align*}
\left(S_{u_i} \right)_m &= \frac{1}{K_{u_i} + \sqrt{-1\omega C_{u_i}}}, \quad \text{if } l = m \\
&= 0, \quad \text{if } l \neq m
\end{align*}
\tag{4}
\]

이어서 \(K_{u_i} \)와 \(C_{u_i} \)는 \(k \)-번째 부분구조와 \(i \)-번째 부분구조 결합부간의 강성계수와 감쇠계수이고 \(K_{u} = K_{u_i}, C_{u} = C_{u_i} \)이다.

식(1)과 식(2)를 식(3)에 대입하고 결과 행렬식을 미지수인 결합부의 변력을 대하여 정리하면 다음과 같은 선형 대수방정식을 얻을 수 있다.

\[
H \cdot R = F \tag{5}
\]

여기서

\[
R = \begin{bmatrix} R_1^k & R_1^j & \cdots & R_i^k & R_i^j & \cdots & R_{n-1}^k & R_{n-1}^j \end{bmatrix}^T \tag{6}
\]

\(H \)는 크기가 \(n(n-1)/2 \times n(n-1)/2 \)인 전역(global) 행렬로서 각각의 부분구조의 연결상태에 따라 각 부분구조의 연결부 사이의 전달함수와 결합부의 강성 및 감쇠계수로 이루어진다. 그리고 \(F \)는 각각의 부분구조에 작용하는 외력으로 이루어진 외력 벡터이다. 식(5)는 미지수와 식의 수가 같은 선형 대수 방정식이므로 일반적인 수치해법으로 미지수인 결합부의 변력을 계산할 수 있다.

결합부의 변력을 식(5)를 이용하여 계산하면 임의의 \(k \)-번째 부분구조에서의 외력과 결합부 변력이 가지의 함수이며 \(k \)-번째 부분구조에서의 외력의 점 \(r \)에서의 주파수 응답 \(x_r^k \)은 다음과 같이 쓸 수 있다.

\[
x_r^k = \sum_{i=1}^n H_{u_i} H_{y_i}^k + H_{y_i}^j f^k \tag{7}
\]

여기서 \(H_{u_i} \)와 \(H_{y_i} \)는 \(k \)-번째 부분구조에서 각각 응답점과 결합점, 응답점과 외력점 사이의 주파수 응답함수이다.

3. 결합부 동특성 추정

전달함수를 이용하여 결합부의 동특성을 추정하는 방법은 대부분 부분구조의 전달함수와 결합부의 모델링으로 표현된 전체시스템의 응답과 측정을 통해서 얻어진 전체 구조물의 응답을 비교하여 이론적인 관계식을 구성하고 이를 풀어서 결합
부의 동특성을 재산하고 있다. 이와 같은 방법은 최소한 미지의 결합부 수만큼의 많은 수의 측정점이 필요하고 측정된 FRF에 오차가 포함되는 경우 행렬식의 계산에 세심한 주의가 필요하다는 것이 알려져 있다.(7, 8, 10, 11, 14).

본 논문에서는 2 장에서 기술한 전달함수 합성법을 기반으로 하여 결합부에서의 동특성을 추정하는 방법을 제안한다. 전달함수합성법 기반으로 한 결합부의 특성 추정방법의 기본적인 출발점은 결합부의 강성과 강성을 정확하게 전달함수합성법으로 계산된 시스템의 응답과 측정을 통해서 얻어진 전체 구조모델의 응답을 동일할 것이라는 데 있다. 그러므로 결합부의 동특성은, 결합부의 강성 계수와 감쇠계수를 설계변수로 하고 전달함수합성법으로 계산된 응답과 측정된 응답사이의 차이를 수학적인 계획법(mathematical programming method)을 사용하여 최소화한다면 정확하게 추정할 수 있을 것이다. 따라서 결합부의 동특성 추정 문제는 목적함수를 최소화하는 최적설계문제로 정화할 수 있다.

최적화문제를 구성하기 위한 목적함수는 연결부의 동특성을 정확한 값을 가지면 영이 되며, 최적화법을 이용하여 연결부 동특성을 효율적으로 추정하기 위해서 부드럽게 감소하는 함수를 선택하는 것이 중요하다. 이러한 함수를 추정지수 (identification index)라고 부르기로 하면 추정지수함수는 일반적으로 다음과 같이 쓸 수 있다.

\[\Psi = \Psi(x_{\text{ref}}, x^*_i(b)) \]

(8)

여기서 \(x_{\text{ref}} \)는 전체 구조모들의 측정된 기준응답이고, \(x^*_i \)는 같은 점에 대하여 부분구조합성법으로 계산된 응답이다. \(x^*_i \)는 구조모들의 결합부 연결 특성인 강성계수와 감쇠계수의 함수이고 이를 설계 변수벡터 \(b \)로 표기한다. 식(8)은 일종의 손실함수로서 추정지수함수를 최소화함으로써 구조모들의 결합부 동특성을 추정할 수 있다.

식(8)로부터 추정지수를 최소화하기 위한 수학적 계획법 알고리즘은 매우 다양한지만 공학적인 관점에서 기울기(gradient) 정보를 기반으로 하는 알고리즘들이 전력적인 최소값을 보장하지는 못하지만 가장 효율적인 것으로 알려져 있다. 본 논문에서는 기울기 정보를 이용한 수치 최적화 알고리즘을 이용하여 추정지수를 최소화한다. 식(8)의 설계변수에 대한 기울기는 다음과 같이 쓸 수 있다.

\[\frac{\partial \Psi}{\partial b} = \frac{\partial \Psi}{\partial x^*_i} \frac{\partial x^*_i}{\partial b} \]

(9)

위 식에서 \(\frac{\partial x^*_i}{\partial b} \)는 설계변수, 즉 결합부의 강성 계수 및 감쇠계수에 대하여 응답함수(implicit function)으로 표현되기 때문에 직접적으로 계산할 수 없다. 전달함수합성법의 틀에서 \(\frac{\partial x^*_i}{\partial b} \)를 효율적으로 계산하기 위한 방법은 여자 등(15, 16)에 의해 정확하게 알려져 있으므로, \(\frac{\partial x^*_i}{\partial b} \)를 계산하기 위하여 여자 등이 제시한 설계민감도(Design sensitivity) 해석법을 이용한다.

설계민감도는 설계변수에 대한 기울기 함수이다. \(x^*_i \)에 대한 설계민감도를 계산하기 위해서 우선 식(7)을 결합부 설계인자 \(b \)에 대하여 미분한다. 미분값이 존재한다고 가정하면 식(7)에 대한 미분은 다음과 같이 된다.

\[\frac{\partial x^*_i}{\partial b} = \sum_{i=1}^{n} H_i^* \frac{\partial R^*_i}{\partial b} \]

(10)

위에서 \(\frac{\partial R^*_i}{\partial b} \)는 결합부의 반력이 전체 시스템의 평형방정식을 통해서 결정이 되고, 전체 시스템의 평형방정식은 설계변수에 대하여 응답함수로 나타나기 때문에 직접 계산할 수 없다. \(\frac{\partial R^*_i}{\partial b} \)를 계산하기 위해서 식(5)을 설계변수에 대하여 미분하면 다음과 같다.

\[\frac{\partial H \cdot R + H \cdot \frac{\partial R}{\partial b}}{\partial b} = 0 \]

(11)

식(11)을 정리하면 다음과 같이 쓸 수 있다.

\[\frac{\partial R}{\partial b} = H^{-1} \left[-\frac{\partial H \cdot R}{\partial b} \right] \]

(12)

where

\[\frac{\partial R}{\partial b} = \left[\frac{\partial R}{\partial b} \ldots \frac{\partial R}{\partial b} \ldots \frac{\partial R}{\partial b} \ldots \frac{\partial R}{\partial b} \ldots \frac{\partial R}{\partial b} \right] \]

(13)

위식을 이용하면 \(\frac{\partial R^*_i}{\partial b} \)를 계산할 수 있고, 식(9)과 식(10)을 통하여 추정지수에 대한 설계민감도를 구할 수 있게 된다. 이와 같은 방법으로 설계민감도를 구하면 우선 전체 시스템의 응
감을 구하는 전달함수함법을 기본으로 하기 때문에 설계값에 의한 계산을 최소화할 수 있는 이점이 있다. 예를 들면 설계값도 해석해서 가장 많은 계산이 요구되는 H^{-1}의 경우 시스템의 응답 계산을 위한 과정에서 역행렬이 이미 계산되어 있기 때문에 추가적인 계산이 필요하지 않다. 또한, $\partial H/\partial b$의 계산도 부품구조해석법의 둘에서 정확화되었기 때문에 각각의 부품구조의 전달함수 값이 얻어지고 식(4)에 나타난 결합부의 강소 및 감쇠계수의 탐망이 존재하게 되고 이는 쉽게 해석적으로 값을 얻을 수 있게 된다.

식(10), (12)를 통해서 추정지수의 설계값과도 계산할 수 있게 되면 설계값 설계값도 정보를 기울기 기반 최적화 알고리즘과 연결하면 추정지수의 최소값을 얻을 수 있고 결과적으로 결합부의 동특성을 추정할 수 있다. 이와 같이 최적화 기법을 이용하여 결합부 동특성을 추정하면, 기존의 FRF를 이용한 추정법이 대부분 최소한 추정하고자 하는 결합부의 수많은 전체 시스템의 주파수 전달함수를 측정해야 하지만, 최소 1개의 기준 응답을 사용해서 설계값 설계값도 특정이 가능한 장점이 있다. 하지만 사용하는 최적화 알고리즘의 기울기 기반의 수학적 계획법인 경우 대부분 전역 최소성을 보장하지 못하기 때문에 추정된 결과를 정밀히 검토해야 하며, 여러 초기값을 사용하여 결과를 비교해야 하는 어려움이 있다. 이러한 단점을 극복하기 위해서는 최적화문제의 목적함수가 되는 추정지수함수를 넓은 범위의 감쇠 및 감쇠계수에 대하여 단조감소하도록 선정하는 것이 중요하고 전역에서 단조감소 함수에 정의하는 것은 가능하지 않으므로 여러 가능함수에 대한 수치적 고찰을 통하여 적절한 목적함수의 형태를 다음 장에서 살펴보기로 한다.

4. 수치예제

본 장에서는 3장에서 기술한 부분구조해석법의 결합부 특성 추정방법을 수치예제를 통하여 검증한다. 수치예제를 통하여 여러 가지 추정지수함수에 대하여 각 함수의 수렴특성을 살펴보고 연결부 특성 추정에 적합한 추정지수함수를 선택한다.

4.1 사다리 구조물 문제

수치예제는 [Fig. 3]과 같은 사다리구조물이다. 사다리구조물은 4개의 직각형 체계로 구성되어 있으며 각각의 보는 탄성운동량과 감쇠기의 의해 그림과 같이 연결되어 있다. 각 부분을 연결하는 스프링과 감쇠기의 강소 및 감쇠계수를 추정하는 문제를 생각한다. 우선 주파수 응답함수에 노이즈가 포함되어 전체 점합부 특성 추정의 결과를 살펴보는 데 어려움이 발생하지 않도록 하기 위하여 모든 주파수 응답함수는 유효요소 해석 프로그램인 NASTRAN을 이용하여 계산하였다.

[Fig. 3]의 부분구조 D에 있는 한 응답값을 기준 응답으로 하고 전체 구조물의 응답을 NASTRAN을 이용하여 계산하였다. 기준 응답을 계산하기 위하여 사용된 연결부의 감쇠계수는 모두 $1.0 \times 10^8 N/m$ 있고, 감쇠계수는 모두 동일하게 $1.0 \times 10^7 N/s/m$으로 하였다. 각진점 단위점이 상하방향으로 모든 주파수에 균일하게 작용하는 경우 사다리 구조물의 응답을 전달함수 정리법을 사용하여 계산하기 위하여 [Fig. 3]과 같이 4 개의 부분구조로 나누고, 각각의 부분구조에서 연결점 사이의 주파수응답함수 연산을, 즉 (7)을 구성하는 데 필요한 주파수응답함수를 NASTRAN을 이용하여 계산하여 사다리 구조물에 대한 전달함수성별 모델을 만들었다. 임의의 초기값으로부터 정확한 연결부 특성값의 추정을 행하기 위하여 다음과 같이 세 가지의 추정지수함수를 고려하였다.

$$ \Psi_1 = \int_{\omega_1}^{\omega_2} 400(\log|x_r| - \log|x_{r,ref}|)^2 d\omega \tag{14} $$

$$ \Psi_2 = \int_{\omega_1}^{\omega_2} \left[(x_{real} - x_{ref,real}) + (x_{imag} - x_{ref,imag}) \right]^2 d\omega \tag{15} $$

$$ \Psi_3 = \int_{\omega_1}^{\omega_2} \left[20\log|x_{real} - x_{ref,real}| + 20\log|x_{imag} - x_{ref,imag}| \right]^2 d\omega \tag{16} $$

위식에서 $\| \|$는 응답의 크기를 나타내고 ω는 주파수를 나타낸다. 또, 하cerr real 과 imag은 각각

![Fig. 3 A ladder structure](image-url)
우파수응답의 실수부와허수부를 나타낸다. 첫번째 추정지수함수는 dB 스케일로 나타낸 기존 FRF와 계산된 FRF의 차이를 제공한 함수이며 두번째 함수는 실수부 차이와 허수부 차이를 제공한 함수이다. 세번째 함수는 기존 FRF와 계산된 응답함수의 실수부 차이와 허수부 차이를 dB 스케일로 제공하고 제공한 함수이다. 세 함수 모두 연결부의 등을함을 참가로 추정하면 함수의 값이 0이 된다.

사다리 구조물 문제에서 추정해야 할 연결부의 특성값은 4개의 강성계수와 4개의 감쇠계수로 모두 8개가 된다. 연결부의 특성값을 추정하기 위하여 식(10)과 (12)를 사용하여, 식(14-16)의 추정지수함수에 대한 설계만드음을 계산하여 최적화 소프트웨어에 연결하였다. 최적화 소프트웨어로는 준뉴턴방법(Quasi-Newton method)을 사용하는 MATLAB의 constr 함수를 사용하고, 임의의 초기값을 사용하여 각각의 추정지수함수에 대하여 연결부의 동특성을 추정하였다. 초기의 추정값과하여 연결부 특성값에 정확하게 참가에 수렴한 경우의 응답변화를 Fig. 4에 그렸다.

사용된 최적화 기법이 전통적인 최소평균보조를 보장하지 못하기 때문에 많은 경우 초기값의 설정에 따라 참가의 수렴이 되는 경우가 발생하며 이런 경우 초기값의 변경 후 추정을 반복하는 것이 필요하다. 사다리 구조물 문제에 대하여 초기값의 영향을 각 추정지수함수에 대하여 살펴보기 위하여 8개의 특성값에 일정한 수, M을 놓여 초기값으로 설정하고 추정을 반복하고 결과를 [Table 1]에 정리하였다. 표를 보면 참가에 수렴하는 경우 추정값은 참가와 거의 동일하고 국무적인 최소점에 수렴을 하면 그 오차가 매우 커질 수 있다.

Table 1 Estimation results for the ladder problem

<table>
<thead>
<tr>
<th>Properties</th>
<th>Exact Value</th>
<th>M=1.5</th>
<th>M=0.5</th>
<th>M=4</th>
<th>M=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>강성계수 (N/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>1.8</td>
<td>0.0</td>
<td>99.2</td>
<td>67.0</td>
<td>63.0</td>
</tr>
<tr>
<td>K2</td>
<td>1.8</td>
<td>0.0</td>
<td>28.0</td>
<td>1200.0</td>
<td>23.0</td>
</tr>
<tr>
<td>K3</td>
<td>1.8</td>
<td>0.0</td>
<td>74.0</td>
<td>24.0</td>
<td>45.0</td>
</tr>
<tr>
<td>K4</td>
<td>1.8</td>
<td>0.0</td>
<td>2.9</td>
<td>6400.0</td>
<td>3.3</td>
</tr>
<tr>
<td>감쇠계수 (Ns/cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1.3</td>
<td>0.0</td>
<td>20.0</td>
<td>53.0</td>
<td>710.0</td>
</tr>
<tr>
<td>C2</td>
<td>1.3</td>
<td>0.0</td>
<td>39.0</td>
<td>8900.0</td>
<td>178.0</td>
</tr>
<tr>
<td>C3</td>
<td>1.3</td>
<td>0.0</td>
<td>90.0</td>
<td>75.0</td>
<td>99.0</td>
</tr>
<tr>
<td>C4</td>
<td>1.3</td>
<td>0.0</td>
<td>5.9</td>
<td>5200.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>

Fig. 4 Responses of the ladder structure (x_{ref}=1.0×10^{-6})

하고, 이 경우 초기 추정값을 바꾸어 재수행 하는 것이 필요하고 국무적인 최소점에의 수렴 여부는 기존 응답과 계산된 응답을 비교해보면 우파수 응 답의 형태가 크게 달라지지 않게 판단할 수 있다. 또한 표를 살펴보면 첫번째 추정지수함수, \(\Psi_1\) 이 다른 추정지수함수에 비하여 더 넓은 영역에서 참가를 수렴하는 특성을 보이나 비교적 수렴영역 은 좁은 것으로 나타났다. 그러나 이와 같은 수렴 영역은 강성계수와 감쇠계수의 성질을 잘 고려하 면 대폭적으로 낮힐 수 있다. 즉, 강성계수의 초기 추정값은 예상되는 값보다 낮은 쪽에서 초기값을 설정하고 감쇠계수의 초기 추정값은 예상되는 값보다 낮은 쪽에서 설정하면 초기값이 참가와 큰 차이가 있어도 잘 수렴하는 경향이 있다. 실제로 \(\Psi_1\)의 경우 강성계수에 대해서는 실제값에 비하여 수준을 2만을 줄이고(M=0.01) 감쇠계수에 대해서는
Fig. 5 Contour lines of the identification indexes for K1 vs. K2

Fig. 6 Contour lines of the identification indexes for K3 vs. K4

Fig. 7 Contour lines of the identification indexes for C1 vs. C2

Fig. 8 Contour lines of the identification indexes for C3 vs. C4
는 속도를 1 만큼 올려도(M=10) 설계값에 잘 수렴하는 것을 볼 수 있다. 결합부 동특성 추정시 초기값 선택을 위한 또 하나의 경험적인 규칙은 관심 주파수 영역에서 기준응답에 나타난 피크의 수와 초기값으로 재산한 응답의 주파수 응답에 나타난 피크의 수가 같이지도록 초기값을 설정하는 것이다. 관심 주파수 영역 내에서 피크의 수가 같아지면 참값에 수렴할 확률이 크게 높아진다.

세가지 추정지수함수의 특성을 자세히 살펴보기 위하여 각각의 참값의 동고전을 [Fig. 5-8]에 그렸다. 결합부의 특성값은 모두 8 개가 있으므로 2차원 그래프의 특성상 두 개의 변수만을 변화시키면서 그했다.

최적화 기법을 사용할 때 부드럽게 단조 감소하는 함수의 성질은 적은 축마과 변으로 최소값에 수렴하므로 연결부 추정시 이용을 최소화할 수 있고 극적으로 최소값에 수렴하는 것을 방지할 수 있으므로 대체로 중요하다. [Fig. 5-8]을 살펴보면 추정지수함수 Ψ_1 이 가장 부드러운 함수를 구성하는 것을 알 수 있다. 추정지수함수 Ψ_2 도 비교적 부드러운 함수를 구성하고 있으나 일부 변수에 대하여 불안정해질 수 있음을 볼 수 있다. 그러므로 추정지수함수 Ψ_1 이 최적화 기법을 사용한 결합부 동특성 추정시 사용할 수 있는 적용함수로서 가장 적당하다고 판단된다.

4.2 엔진마운트 문제

실제적인 문제의 하나로서 [Fig. 9]와 같은 송 용차의 엔진마운트 시스템을 생각한다. 이 시스템은 중형차에 적합 4 기통 엔진을 장착하기 위한 것으론 3 개의 고무 마운트와 1 개의 유압(hydraulic) 마운트가 엔진을 지지하고 있으며 전후 엔진마운트는 서브프레임(subframe)에 장착되어 있다. 서브프레임과 차체는 모두 고무 부시로 연결되어 있다.

이 엔진마운트 문제는 저자 등이 참고한 [15]에서 다루었던 문제로 다중 부분구조함성을 이용하여 실제 송용차의 실패소음의 예측하기 위한 모델을 구성했던 경우이다. 이 모델에서 관심 있는 응답은 왼쪽 헤드 치원의 실패소음이고 가정에 엔진의 폭발력이다. 부분구조함성을 적용하기 위하여 엔진, 두 개의 서브프레임, 차체를 포함한 차체 각각 하나의 부분구조로 보면 [Fig. 9]의 10 개의 엔진마운트 및 부시는 각각의 부분구조를 연결하는 연결점이 된다. 우선 주파수 응답함수를 이용한 다중 부분구조함성을 이용하여 실패소음의 계산하기 위하여 필요한 주파수응답함수를 구하였다. 파워트레인을 포함하는 부분구조는 측량 및 판성값과 위치값의 위치로부터 주파수 응답함수를 구하였으며, 서브프레임은 별 간요소로 모델링한 유한요소해석을 통한 주파수응답함수를 구하였다. 차체를 포함하는 차체의 주파수응답함수는 측량방해 시험을 통하여 구하였다. 연결점을 이루는 엔진마운트 및 부짓의 특성은 방진고무 시험기 이용하여 측정하였으며, 엔진의 폭발력은 설계한 헤드의 압력만을 측정하여 등가의 헤드를 구하였다. 이러한 과정의 유용성은 저자들의 선형연구에서 실험결과와의 비교를 통하여 증명된 바 있다[16].

[Fig. 10]은 설계함수 다중 할당법 모델을 이용한 실효소음의 실효소음 해석의 결과를 보여준다.

본 예제에서는 설명한 실효소음 부분구조 모델에 있어서 엔진마운트 중 하나인 1 번 엔진마운트의 강성과 감쇠계수를 추정한다고 가정하고 계산된 연결부 특성 추정방법을 적용하였다.

![Fig. 9 An engine mount system of passenger car](image-url)

![Fig. 10 Interior noise calculated by the multi-domain FBS method](image-url)
추정치수함수는 사다리 구조물 문제를 통하여 첫번째의 함수가 가장 안정된 결과를 보였으므로 식(14)에 의해 정의된 식을 사용하였다. 식(14)의 추정치수함수를 이용한 연결부 동특성을 추정을 수행할 때, 엔진마운트는 주파수에 따라 강성 및 감쇠가 크게 변하기 때문에 각각의 주파수별로 추정을 수행하였다. 각각의 주파수별 강성 및 감쇠계수의 추정은 두 단계를 통하여 이루어졌다. 첫번째 단계는 엔진마운트의 각방향 강성 및 감쇠계수가 주파수에 따라서 상수라고 가정하고, 엔진의 이차 조화성분에 의해서 발생된 1000 rpm에서 4000 rpm 사이의 소음응답을 추정치수함수로 정의하여 각방향별로 6개의 연결계수를 추정하였다. 이 때 초기값은 강성계수는 $1.0 \times 10^5 N/m$, 감쇠계수는 $1.0 \times 10^2 N \cdot sec/m$였다. 실제 추정값은 [Fig. 11]에 나타나 있다. 두번째 단계는 첫번째 단계에서 추정된 평균값을 초기값으로 놓고 각각의 연결계수값이 주파수 별로 변할 수 있다는 가정을 도입하여 각각의 주파수에서 추정치수함수를 최소화하는 연결계수를 구하였다. 엔진마운트에 대한 강성 및 감쇠계수의 추정 결과를 [Fig. 11]에 보이고 추정된 결과를 사용하여 계산한 실내소음 응답을 기준응답과 [Fig. 10]에 비교하였다. 추정 결과를 산출하면 대체적으로 통과가 근사적으로 접근한 것을 볼 수 있다. 하지만 일부방향의 강성이나 낮은 주파수에서는 특성값 추정이 만족스럽지 못한 것으로 나타나는데 이는 제안된 방법의 한계가 보는 기준 응답으로 설정된 실내소음이 관심영역에서 결합부 동특성에 거의 무관하게 나타나는 것에 연유한 결과라고 판단된다. 신체로 [Fig. 10]에서 볼 수 있는 것처럼 연결부의 추정된 값과 실제 값이 크게 다른 1500 rpm 영역 이하에서도 기준 응답과 추정된 값으로 계산된 소음 응답은 수치적 인 오차의 범위 내에서 일치하는 것으로 나타났다.

5. 결론

다중 부분구조합성체의 틀에서 해석적인 설계 민감도 공식을 적용하는 최적화 기법을 사용하여 전동/소음 시스템의 연결부의 동특성을 추정하는 방법을 제안하였다. 제안된 방법은 전체 구조물의 응답계산을 위한 전달함수를 시험 또는 유한요소 해석 등으로 얻을 수 있고 연결부의 동특성을 추정하는 데 필요한 전체구조물의 응답을 최소화함으로 살펴볼 수 있는 장점이 있다. 또한, 최적화 기법에서 사용하는 추정치수함수의 형태에 대하여 수치적 실험을 수행하고 연결부 동특성 추정에 알맞은 함수의 형태를 살펴보았다. 사다리 구조물의 연결부와 승용차의 엔진마운트의 동특성을 추정하는 수치계제를 통하여 제안된 방법의 유용성을 보였다.

항후의 과제로 최적화 기법을 사용할 때 전역적 최소점을 찾는 알고리듬을 연결하여 추정 초기값에 따라 추정값이 달라질 수 있는 여러음을 개선할 필요가 있으며, 주파수 응답함수 등에 노이즈가 포함되었을 경우의 현상을 살펴보고 추정방법을 보다 강하게 개선하는 것이 필요한 것으로 판단된다.

후기

본 논문은 동의대학교 2003 년 교내 일반연구과 제 연구비의 지원에 의하여 수행되었음.

참고문헌

(1) Yuan, J.X. and Wu, X.M., 1985, “Identification of

